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The Success of Deep Learning

Deep learning has show the great success in the fields of computer
vision, natural language processing, speech recognition, etc.
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Artificial Intelligence

With the great development of deep learning technology
the application of art|f|C|aI|nteII|gence extends its vitality

Intelligent manufacturing

Speech recognition

More
Possibility

Auto-driving




Challenges

Severe threats to life and property




Challenges

More safety & security sensitive tasks




More Challenging Scenarios

A new type of attack: adversarial examples and related problems

O Adversarial examples are elaborately O Definition:
designed perturbations to attack fx)# fx+r)st |7l < Spmax
machine learning models: where x is a input image, 7 isthe
* Imperceptible to human; noise, and f is the model.

* Misleading to DNNs;

Clean Example Noise  Adversarial Example  Clean Example Adversarial Adversarial Example
Human. Panda Human. Panda Human . Banana Patch Human. Banana
DNN : Panda DNN . Gibbon DNN : Banana DNN . Toaster



Adversarial Examples

Digital World

+.007 x
xr sign(VeJ(0,x.y)) . %
e Sk esign(VeJ (0, x,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence
Classifier Input 2 Classifier Output
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Trend in the World

Al-Ready DoD by 2025 Ways for DoD to Operationalize Al

Warfighters enabled with baseline digital literacy and

access to the digital infrastructure and software An Al-ready DoD will enable the application and
required for ubiquitous Al integration in training, integration of Al-enabled technologies into every facet
exercises, and operations of warfighting

NSCAI| Recommendations

Business processes
Prepare: Design
Readiness

Plan and task collection

Collect
} Senseand ..
Understand: vt

Ubiquitous
application and
integration of
Al-enabled
technologies into

Exploit and analyze
Disseminate

Planning

Declda: Deciding
every facet of 2 Tasking, delegation

warfighting and distribution

Logistics and sustainment
Movement

Targeting

Precision and accuracy

e THE NATIONAL SECURITY COMMISSION
‘ ON ARTIFICIAL INTELLIGENCE

Execute:




Trend in the World

Hiow Al iz Current Threats Mew Threats Threats TO Al Stacks
R Advanced BY Al Systems FROM Al Systems Themselves
SR TR A Al transforms existing Al creates new Al itself is also a new
range and reach of threats threat phenomena attack surface

* Self-replicating + Deepfakes and + Al attack involves the
Al-generated computational whole “Al stack”.
malware propaganda Examples include:

* Improved « Micro-targeting: o Model inversion
and autonomous Al-fused data for o Training data
disinformation targeting or blackmail manipulation
campaigns o “Data lake”

* Al swarms and poisoning

« Al-engineered and nano-swarms

targeted pathogens




Trend in the World

==
INDEPENDENT
HIGH-LEVEL EXPERT GROUP ON
ARTIFICIAL INTELLIGENCE

SET UP BY THE EUROPEAN COMMISSION

THE NATIONAL

ARTIFICIAL INTELLIGENCE
RESEARCH AND DEVELOPMENT
STRATEGIC PLAN: 2019 UPDATE

* X %
* #

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

JUNE 2015

Ensure the safety and reliability of
artificial intelligence systems

Framework of Trustworthy Al



Trend in the World

Original Inputs Modified Inputs Wrong ML Detection

SPEED

(Evtimov et al.,
LIMIT | ‘yc Berkeley,
4 5 2017)

Confusion for self-
driving vehicles

Incorrect object recognition ?

Invisibility ?

(Metzen BOSCH *17)

Dm PA Guaranteeing Al Robustness against Deception (GARD), 2019




Trend in China
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Standards

ISO/IEC JTC 1/SC 27

Information security, cybersecurity and privacy
protection
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DeepTest: Automated Testing of
Deep-Neural-Network-driven Autonomous Cars
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m Adversarial Robustness Toolbox (ART) v1.3

Steering angle Brake Accelerate

\.."I'ndividual neuro'ﬁ'..... CO LUMBIA
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Foolbox|Native: Fast adversarial attacks to benchmark . o
the robustness of machine learning models in PyTorch,

TensorFlow, and JAX . .

. . . . . w docs | passing j| version [1.6.1 ll €% Igtm alerts codecov unknown
Foolbox is a Python library that lets you easily run adversarial attacks against

. . . . . code style black | License [MISS python 3.6 | 3.7 | 3.8 on slack |
machine learning models like deep neural networks. It is built on top of EagerPy and

works natively with models in PyTorch, TensorFlow, and JAX.
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Adversarial Examples in Digital World

Adversarial examples are somewhat universal and not just
the results of overfitting to a particular model or to the specific
selection of the training set

y*#Fg(x+71r) st r<e

Panda Noise Gibbon

“any Al that uses DNNs to
classify inputs — such as
speech — can be fooled”

Adversarial examples
generated for AlexNet

Szegedy C, Zaremba W, Sutskever |, et al. Intriguing properties of neural networks[J]. arXiv preprint arXiv:1312.6199, 2013.



Attacks in the Digital World: the Overview

Digital attacks generate advgrsarial pe.rturbations y¥ £ Fo(x +7) st r<e
for input data in the digital pixel domain
Depend on model

—  White-box
parameters

Attacks

Not depend on model
parameters

—  Black-box

Several
tasks

1

=
A\ antpu ||

i




Summary

Method Author Attack Type Year
FGSM attack Goodfellow I. J. Gradient-based attack 2014
C&W attack Carlini N. Optimization-based attack 2017
PGD attack Madry A. Gradient-based attack 2017

PBBA Papernot N. Transferability-based attack 2017
Z0OO0 Attack ChenP. Y. Optimization-based attack 2017
BA Brendel W. Optimization-based attack 2017
EAD attack Chen P. Y. Optimization-based attack 2018
AdvGan Xiao C. Model-based attack 2018
CAR LiT. Interpretable-theory-based attack 2021




Gradient-based attack: FGSM attack

] Fast Gradient Sign Method

w'd =w! (z+n) =wlz+w'n linear hypothesis

* The fast gradient sign method trys to craft adversarial examples by using some

gradient information during forward and backward in DNNs.
' =z + esign(V,L(0,2,y))

* simple but effective adversarial attack

+ .007 x —
@ sign(VaJ (6, ,y)) esign(V..J (8, 2, 1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow | J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.



Gradient-based attack: FGSM attack

1 Fast Gradient Sign Method

very large .
learning rate /.«

* FGSM use the gradient information of loss function.

gradient 1

gradient

y L
[ )
l backward
Nl ———L(6,x,y)

0

sign(V,,.L(8,x,y))

x" =x + esign(Vmﬁ(Q, Z, y))

Goodfellow | J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.



Gradient-based attack: FGSM attack
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The influence of different epsilon values for FGSM Weight visualizations on MNIST

Goodfellow | J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.



Gradient-based attack: PGD attack

O Projected Gradient Decent minp(6), where p(6) = E(ry)p \.mellsx L(6,x +3, y)J
- oe

* Generate adversarial examples by iteratively add small perturbations on clean

images like FGSM and project it to the epsilon ball.

.fll', =T+ ESign(v:]:E(eawv y))
xi‘+1 _ Hx—|—$ (xt —|— Ocsgn(VxL(Gf xfy)))

* The strongest attack, but time consuming.

Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant to adversarial attacks[J]. arXiv preprint arXiv:1706.06083, 2017.



Gradient-based attack: PGD attack

MNIST
[Method  [Steps  [Restarts [Source || Accuracy|
C I FA R- 1 0 MNatural - - - 98.8%
Method  [Steps  [Source [[Accuracy| FGSM - - A 95.6%
= PGD a0 1 A 932%
Natural |- - 87.3% PGD 0 1 A 918%
FGSM - A 56.1% PGD 0 70 A 504%
PGD 7 A 50.0% PGD 100 20 A 89.3%
PGD 20 A 45.8% Targeted |40 1 A 92.7%
CW 30 A 16.8% CW a0 1 A 94.0%
oM - A &7.0% SV OB R S 1
7 0 3 - K i)
PGD 7 A, 64.2 O/ 2 PGD 40 1 A 96.0%
CW 30 A 78.7% PGD 100 20 % 95.7%
FGSM - Apat 85.6% CW 20 1 A 97.0%
PGD 7 At 86.0% CW+ 40 1 A 96.4%
FGSM N N B 95.4%
PGD a0 1 B 96.4%
CW+ - - B 95.7%
—a— PGD adv. tra:med
o o] Ot |
g o 60} 60|
S 60 60
§ 40t 40} 401 401
< 20t 201 20 20¢
o e Heet | Of  Twwaaii i obl L il | [T ol Tt
0 0.1 0.82 03 04 0 1 2 % 4 5 6 0 5 10 185 20 25 30 0 20 40& 60 80 100

(a) MNIST, foo-norm  (b) MNIST, ¢>-norm  (c) CIFARI10, {eo-norm  (d) CIFAR10, />-norm

Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant to adversarial attacks[J]. arXiv preprint arXiv:1706.06083, 2017.



Optimization-based attack: C&W attack

[J Optimization-based

Noise Gibbon
minimize D(z,z + J) o :

such that C(z+9) =1
x40 € [0,1]"

* The C&W attack meets both conditions by optimizing as follows:

51' = %(t&mh(mg) + 1) — ;.

minimize ||%(tanh(w} +1)—z|5+c- f(%(tanh(w) +1)

minimize ||é, + ¢ f(x + 9) ::>

such that = + 6 € [0, 1]" with f defined as
f(2") = max(max{Z(z'); : i #t} — Z(z')y, —k).

Carlini N, Wagner D. Towards evaluating the robustness of neural networks[C]//2017 ieee symposium on security and privacy (sp). IEEE, 2017: 39-57.



Optimization-based attack: C&W attack

] Framework

 C&W method use optimizer to minimize the object function.
Perceptual Distance
_ . .
HE (tanh(w) +1) — x
2
X

Adversarial Loss

Initial
optimizer
parameter

%(tanh(w) +1) .
f (E (tanh(w) + 1))

L Optimizer Backward with Iterations J

A

Carlini N, Wagner D. Towards evaluating the robustness of neural networks[C]//2017 ieee symposium on security and privacy (sp). IEEE, 2017: 39-57.



Optimization-based attack: C&W attack

Best Case Average Case Worst Case
Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected
Variable Descent Descent Variable Descent Descent Variable Descent Descent
mean prob mean prob mean prob || mean prob mean prob mean prob || mean prob mean prob mean  prob

fi 246 100% 293 100% 231 100% 435 100% 521 100% 4.11 100% 776 100% 948 100% 7.37 100%
fo 455 80% 397 83% 349 83% 322 4% 899 63% 1506 74% 293 18% 1022 40% 1890 53%
fa 454 T71% 407 81% 376 82% 347  44% 955 63% 1584 74% 309 17% 1191 41% 24.01 59%
fa 501 86% 6.52 100% 7.53 100% 403 55% 749 T1% 760 N% 355 24% 425 35% 410 35%
fs 1.97 100% 220 100% 1.94 100% 3.58 100% 420 100% 3.47 100% 642 100% 7.86 100% 6.12 100%
fe 1.94 100% 2.18 100% 1.95 100% 347 100% 411 100% 3.41 100% 6.03 100% 7.50 100% 5.89 100%
fr 1.96 100% 221 100% 1.94 100% 3.53 100% 4.14 100% 3.43 100% 620 100% 7.57 100% 594 100%

e}

arget Classification (Ls) Target Classification (Lg)

There are many possible choices

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 [§) 7 8 9

, | ololelelelolololele] Sololclolelolololels]
ile) = lossrele) 1 -Auuuuuunnn -punuAnunnnn
fal@) = g B = £ -"EAAREBEEBEBEBERA ."ABAAEBEBEEBBRA
fs(z') = softplus(max(F(z');) — F(z'):) — log(2) e g
R, - ElE e e e e e - ElEl el Ee e e e e
Jalz) = (05 = Flw).) c-EEEEEEEEES Cr-EEEEEEEEEE
fi(=) = ~log(2F(z ). —2) c-appEEERERRE Mellererererererere
Jo(@') = (max(Z(='):) - Z())" -FAAAAAARARER -AAAAAEERAR
fr(z') = softplus(max(Z(z');) — Z(z')¢) — log(2) > | =] HHEHE o =
i " AN RKR - AN NBERK

Carlini N, Wagner D. Towards evaluating the robustness of neural networks[C]//2017 ieee symposium on security and privacy (sp). IEEE, 2017: 39-57.



Optimization-based attack: EAD attack

] Elastic-Net Attack

* Formulated as an elastic-net regularized optimization problem.

minimize ||0||, + ¢ f(xz + 4) Algorithm 1 Elastic-Net Attacks to DNNs (EAD)

such that x + 6 € [U‘ 1]'” Input: original labeled image (xg, ), target attack class
' t, attack transferability parameter ~, L regularization pa-
rameter 3, step size «y, # of iterations /
Output: adversarial example x
Initialization: x(0) = y(0) = x,
for k =0tol —1do
x(EHD) = Sa(y ) — ap Vg(y*)))
y+1) — x(k+1) kL x (k1) (k)

+3
minc- f(z,t) + Blle — @oll; +[je —2oll;  endfor
x Decision rule: determine x from successful examples in
s.t. xec[0,1]P {x®*)}I_ (EN rule or L; rule).

Iterative Shrinkage-Thresholding Algorithm

Chen P Y, Sharma Y, Zhang H, et al. Ead: elastic-net attacks to deep neural networks via adversarial examples[C]//AAAl. 2018, 32(1).



Optimization-based attack: EAD attack

MNIST CIFAR10 ImageNet |
Attack method | ASR L L, L ASR L, Lo L ASR I, Lo L
C&W (L») 100 2246 1972 0514 | 100 13.62 0392 0.044 | 100 2322 0.705 0.03
FGM-L, 39 535 4186 0.782 | 48.8 51.97 148 0.152 | 1 61 0.187 0.007
FGM-L, 346 39.15 3.284 0.747 | 42.8 395 1.157 0.136 | 1 2338 6.823 0.25
FGM-L 425 1272 6.09 0296 | 52.3 127.81 2373 0.047 | 3 3655 7.102 0.014
I-FGM-L, 100 3294 2606 0591 | 100 17.53 0502 0.055 | 77 5264 1.609 0.054
[-FGM-L> 100 3032 241 0.561 | 100 17.12  0.489 0.054 | 100 774.1 2.358 0.086
I-FGM-L . 100 7139 3472 0.227 | 100 333 0.68 0.018 | 100 8642 2.079 0.01
EAD (ENrule) | 100 174 2001 0.594 | 100  8.18 0.502 0.097 | 100 6947 1563 0.238
EAD (L rule) | 100 14.11 2211 0.768 | 100  6.066 0.613 0.17 100 409 1.598 0.293

IRE b1

>
o

Attack success rate (%)

2 e BRI 4
: -a-EAD (EN rule) )
. 1144
40 --EAD (L, rule) AL
—I-FGM-L, S|e|G
“ I-FGM-L, [7]
10 I-FGM- L, 4 g
o
0 10 20 30 40 50 60
transferability parameter & (@ EAD (EN rule) (b) EAD (L1 rule) (©) -FGM-L
Transferability of parameter k Different adversarial examples on MNIST

Chen P Y, Sharma Y, Zhang H, et al. Ead: elastic-net attacks to deep neural networks via adversarial examples[C]//AAAl. 2018, 32(1).



Optimization-based attack: ZOO Attack

[ Zeroth Order Optimization attack

* Directly estimate the gradients of the targeted DNN: zeroth order stochastic coordinate
descent, with hierarchical attack and importance sampling techniques

Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordinate Algorithm 3 ZOO-Newton: Zeroth Order Stochastic Coordinate
Descent with Coordinate-wise ADAM Descent with Coordinate-wise Newton's Method
Require: Step size n, ADAM states M € RP, v € RP, T € ZP, Require: Step size 7

ADAM hyper-parameters ; = 0.9, f = 0.999, € = 1078
1 Me—0,v—0T«0
2: while not converged do
Randomly pick a coordinate i € {1,---,p}

1: while not converged do
22 Randomly pick a coordinate i € {1,--- ,p}
Estimate g; and h; using (6) and (7)

3
3 ~
4. Estimate §; using (6) 4 if h; < 0 then
5 T; «T; +1 5: 5 — —f?g}
6 M; — piM;+ (1= B1)gi,  vi « Povi + (1= P2)g? 6 else )
7: Mi=Mi/(1_ﬁ1Ti)a ?3i=vi/(1—ﬁ;'ri) 7 5*<__q%
& 0" =-7g \/vﬂl g endif I
9 Update x; — Xj + 6" 9. Update x; « x; + 6"
0:

1 : end while 10: end while

Z0O Algorithm

 Spare the need for training substitute models and avoiding the loss in attack
transferability.

Chen P Yet al. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM workshop on artificial

intellisence and security. 2017: 15-26.



Optimization-based attack: ZOO Attack

L
z
©
i
B
S
151
O
T
X
Q.
>

Channel R difference

ASR and Average Time on MNIST and CIFAR-10

y pixel coordinate

x pixel coordinate
Channel R sample prob.

MNIST
Untargeted Targeted
Success Rate Avg. Lo Avg. Time (per attack) Success Rate Avg. Ly Avg. Time (per attack)
White-box (C&W) 100 % 1.48006 0.48 min 100 % 2.00061 0.53 min
Black-box (Substitute Model + FGSM) 40.6 % - 0.002 sec (+ 6.16 min) 7.48 % - 0.002 sec (+ 6.16 min)
Black-box (Substitute Model + C&W) 333 % 3.6111 0.76 min (+ 6.16 min) 26.74 % 5.272 0.80 min (+ 6.16 min)
Proposed black-box (ZOO-ADAM) 100 % 1.49550 1.38 min 98.9 % 1.987068 1.62 min
Proposed black-box (ZOO-Newton) 100 % 1.51502 2.75 min 98.9 % 2.057264 2.06 min
CIFAR10
Untargeted Targeted
Success Rate Avg. Lo Avg. Time (per attack) Success Rate Avg. Ly Avg. Time (per attack)
White-box (C&W) 100 % 0.17980 0.20 min 100 % 0.37974 0.16 min
Black-box (Substitute Model + FGSM) 76.1 % - 0.005 sec (+ 7.81 min) 11.48 % - 0.005 sec (+ 7.81 min)
Black-box (Substitute Model + C&W) 253 % 2.9708 0.47 min (+ 7.81 min) 53 % 5.7439 0.49 min (+ 7.81 min)
Proposed Black-box (ZOO-ADAM) 100 % 0.19973 3.43 min 96.8 % 0.39879 3.95 min
Proposed Black-box (ZOO-Newton) 100 % 0.23554 4.41 min 97.0 % 0.54226 4.40 min
Channel G difference Channel B difference
g o 120 - - - 102
= ] o =Without Hierarchical Attack
w S ¥ £ - - —Without Importance Sampling
s Sy s g 100 ——Without Resetting Adam states
3 . 3 =T 43 Tochniques Q| Without Hierarchical Attack
E . E . on 8 H;S g 107 ——without Importance Sampling AN
o €\ @ 5 —All Techniques
ey e 9 3 o =
x pixel coordinate x pixel coordinate :J 60 2% " ie) ° ]
Channel G sample prob. Channel B sample prob. .FE g 15 0 : g b=
o ° —— o § \ w02t S
% . Ll g @ 2%
s . = o 53
0 o - =8
20 ©3
i aocars 104 g 14 16 18 2
0 — ” 104
R T @ 0 ES 0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18
x pixel coordinate x pixel coordinate o lterations 104 lterations 104

Channel Difference and Sample Probability

Loss with Iterations

Chen P Yet al. Zoo: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]//Proceedings of the 10th ACM workshop on artificial

ence and securi

2017 15-26.




Optimization-based attack: BA

[ Boundary Attack

* A decision-based attack that starts from a large adversarial perturbation and then seeks to
reduce the perturbation while staying adversarial.

Data: original image o, adversarial criterion c(. ), decision of model d(.) Basic Intuition Single step Hyperparameters
: -~ . ~ ~12 . e #1. rand th 1 st iusti e
Result: adversarial example 6 such that the distance d(o, 6) = |0 — 6|5 is minimized Staring image 12, step towards vignalimage Adjusting step-size of #1
initialization: k = 0, 6" ~ U(0,1) s.t. 8° is adversarial; =
while & < maximum number of steps do
draw random perturbation from proposal distribution n;, ~ P(6"~!);
o ~k—1 . N = steps of the algorithm ~50% of orthogonal perturbations
if o + Ni 1§ adversarial then g ‘r_ﬁl_, should be within adversarial region
=k _ ~k—1 . ]
‘l seto” = o + ULE 5 i #ZL Adjusting step-size of #2
else -
o
‘ set 5k = 6k_1' = original image P
:
en d classified correctly l
k=k+1 classified incorrecily clasifid corrct
end (adversarial) Suceess rate of total perturbation should
. .- . Input Dimension 2 be higher then threshold (e.g. 25%).
Algorithm 1: Minimal version of the Boundary Attack.

BA Algorithm Boundary Example

* Do not rely on substitute models, but should query many times

Brendel W.et.al. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[J]. arXiv preprint arXiv:1712.04248, 2017.



Optimization-based attack: BA

ASR and L2 distance metric on different methods

ImageNet

Attack Type MNIST CIFAR VGG-19 ResNet-50 Inception-v3

FGSM gradient-based  4.2e-02  2.5e-05 1.0e-06 1.0e-06 9.7e-07

DeepFool gradient-based  4.3e-03 5.8e-06 1.9e-07 7.5e-08 5.2e-08

Carlini & Wagner gradient-based  2.2e-03  7.5e-06 5.7e-07 2.2e-07 7.6e-08

Boundary (ours) decision-based  3.6e-03 5.6e-06 2.9e-07 1.0e-07 6.5¢-08

MNIST CIFAR ImageNet (VGG-19)
e ' : 10-1
£ 10-2
E o 1077
é % 1071
2 : T Z om0
1077
0 ™M 2M
model calls
20813 calls 23292 calls original Adversarial examples

and boundary distance
with different calls

Brendel W.et.al. Decision-based adversarial attacks: Reliable attacks against black-box machine learning models[J]. arXiv preprint arXiv:1712.04248, 2017.



Model-based attack: AdvGAN

] Adversarial Generative Adversarial Network

* generate adversarial examples with generative adversarial networks

Real I_I: | Loan = E; logD(x) + E, log(1 — D(x + G(2))).
|| D Laan
Adv

M |_| ,ngv:]Exff(SC‘i‘g(m):t)a

g z+G(z) Discriminator

o Perturbed instance — Lhinge = Eo max(0, [|G(z)]l2 — ¢),

i [ !"ﬂadﬂ L= ﬁ;fdv + aLgan + BLuinge;

Target white-box | l
Jdistilled black-box s~ + — . =

T
Original instance
Generator limiwl l
f

AdvGAN Framework Loss Function

* potentially accelerate adversarial training as defenses.

Xiao C, Li B, Zhu JY, et al. Generating adversarial examples with adversarial networks[J]. arXiv preprint arXiv:1801.02610, 2018.



Model-based attack: AdvGAN

] Framework

* Generator G generates adversarial perturbation G(x).

* Discriminator D compares x with x + G(x). => Lecan
 Target model f classifies adversarial example x + G(x). => Lgdv - L
* Hinge loss is used to normalize and stabilize the training.  => Ly 4 |
Real
— — I D Lgan
Adv
I_I  —
Z ” g z + G(z) Discriminator
Original instance e Perturbed instance T .
~ Generator My |_| I
I f ::| I—" »Cad'u
Target white-box | |—l I

/distilled black-boX ~— » — . —

AdvGAN Framework

Xiao C, Li B, Zhu JY, et al. Generating adversarial examples with adversarial networks[J]. arXiv preprint arXiv:1801.02610, 2018.



Model-based attack: AdvGAN

ASR on MNIST and CIFAR-10

y
]

Data | Model | Defense FGSM Opt. AdvGAN
Adv. 43% 4.6% 8.0%
A Ens. 1.6% 4.2% 6.3%
M Iter.Adv. 4.4% 2.96% 5.6%
N Adv. 6.0% 435% 72%
I B Ens. 2.7% 3.18% 5.8%
S Tter.Adv. 9.0% 3.0% 6.6%
T Adv. 2.7% 2.95% 18.7%
C Ens. 1.6% 2.2% 13.5%
Iter. Adv. 1.6% 1.9% 12.6 %
C Adv. 13.10% 11.9% 16.03%
1 ResNet Ens. 10.00% 10.3% 14.32% (b) Black-box attack
F Iter Adv ~ 22.8% 21.4% 29.47%
A ) Adv. 5.04% 7.61% 14.26%
R R?S‘g‘:;t Ens. 4.65%  8.43%  13.94 %
10 Iter. Adv.  14.9%  13.90%  20.75% 775 1777
33 e 3

PRV AN —
VS~ G R

3
P 4

MNIST(%) CIFAR-10(%)
Model A B C [ResNetWide ResNet
Accuracy (p) 99.0 99.2 99.1 92.4 95.0
Attack Success Rate (w) 97.9 97.1 98.3| 94.7 99.3
Attack Success Rate (b-D)93.4 90.1 94.00 78.5 81.8
Attack Success Rate (b-S)30.7 66.6 87.3 10.3 13.3

@
-
&

e,

Eagls A N

TVOLVWR O

QR EDLRIN~O

O Un N\ -
N BCECHBARR =
QAN ENL P M~C
N AN O IR K

0 DR &) QW N
M s TR W)

QBWILTOAPR=O
QRN e W R~

P
QAN ¢

~Q Co~g -

Xiao C, Li B, Zhu J Y, et al. Generating adversarial examples with adversarial network arXiv preprint arXiv:1801.02610, 2018



Transfer-based attack: PBBA

1 Practical Black-Box Attacks

* Train a parallel model called substitute model to emulate the original model

Jacobian-based
ataset Augmentation

Oracle DNN O
Substitute Training _
Dataset Collection S / \O( S,)
So
\ Substitute Dataset Substitute DNN F
D

Labeling Training
Substitute DNN F pep+1
Architecture Selection

Spi1 ={Z+ Apy1-sgn(Jp[O(F)]) : F€ S,}US,

PBBA Framework

* First practical demonstration of an attacker controlling a remotely hosted DNN

with no knowledge about the model internals or its training data

Papernot N, McDaniel P, Goodfellow I, et al. Practical black-box attacks against machine learning[C]//ACM ACCCS. 2017: 506-5109.



Transfer-based attack: PBBA

Attack Accuracy and Transferability Hyper-parameters and Transferability
Substitute | Initial Substitute Training Set from ~DNN A—<-DNN F~-DNN G~ DNN H--DNN |-~DNN J~~DNN K=~DNN L--DNN M
Epoch MNIST test set | Handcrafted digits > 100
0 24.86% 18.70% 4
1 11.37% 19.89% g %
2 65.38% 29.79% 2 &
3 74.86% 36.87% 2 50
4 80.36% 40.64% & 40
5 79.18% 56.95% g
6 81.20% 67.00% 2 fg
< o

0 0.2 04 0.6 0.8 1
Input variation parameter

DNN | Accuracy | Accuracy | Transferability

ID (p=2) | (p=6) (p=6)

" 30.50% RIN 5710, e =005 ®0.10 m0.20 =025 m0.30 W0.50 W0.70 ™0.90

F 68.67% 79.19% 64.28% 90.00

G 72.88% 78.31% 61.17% fg'gg

H 56.70% 74.67% 63.44% 60.00

I 57.68% 71.25% 43.48% 50.00

J 64.39% | 68.99% 47.03% oo

K 58.53% | 70.75% 54.45% 20.00

L | 67.73% [ 75.43% 65.95% 1000 I Il o8

M 6264% 7604 6200% 000 Success Rate Transferability Success Rate Transferability

MNIST-based substitute Handcrafted substitute

Papernot N, McDaniel P, Goodfellow I, et al. Practical black-box attacks against machine learning[C]//ACM ACCCS. 2017: 506-5109.



Adversarial Patch: Image Classification

] Adversarial Patch

» create universal, robust targeted adversarial image patches in the real world
 These adversarial patches can be painted, added to any scene.

A( @ ) - , location, rotation, scale,...) -

[ Basic Algorithm
* Prepare classifier, input, and target class
* Find the input to maximizes the Log(P[y|x])
e Perform iterated gradient descent on input x
* Produce a well camouflaged attack
e Patch the p to the image x

p = argmax Ex-x,c-r,1~[10g Pr(914(p,x, L, 0))]

Tom B. Brown, et al. Google Inc. Adversarial Patch. NIPS 2017.



Adversarial Patch: Image Classification

Comparison of different methods for
creating adversarial patches

Attack success rate by technigue

Real-world attack on VGG16

Classifier Output 100
80

w

]

[
- B0

W

LY

o1

o

_— a

slug snail orange

40

g

Classifier Output <

—— Whitebox - Single Model
Whitebox - Ensemble

— Blackbox

== (Control - Real Toaster

20

0 10 20 0 40 5L
Attack as % of image size

banana  piggy_bank spaghetti_

Comparison of patches with various disguises

100 Disguised attack success rate
\L —

Focusing only on defending against small .
perturbations is insufficient, as large, local
perturbations can also break classifiers £°

0 10 20 30 40 S0

Tom B. Brown, et al. Google Inc. Adversarial Patch. NIPS 2017.



Tasks: Object Detection

Patch on corner can affect the whole image
1 Dpatch

Randomly located
Only perturb pixels in patch

Use both classification and regression
losses

No DPatch With DPatch

YOLO cannot detect bike after adding DPatch
Overview of the Dpatch training system

E update pixels in DPatch
YOLO , T
TTTo classify
- Ly @ cation mpare | [DPatch_x, DPatch_y,
- I
BECH AT +.+ c““‘l’:)l,‘g}s"“al ----- | —»| DPatch_w, DPatch_h,
b ! DPatch cls]
; == - - bbox_
- " RPN regression

ground truth
Faster R-CNN

Xin Liu, et al. Duke University. DPatch: An Adversarial Patch Attack on Object Detectors. AAAl Workshop 2019.




Tasks: Object Detection

Results on Pascal VOC 2007

Table 1: Results on Pascal VOC 2007 test set with Fast R-CNN and ResNet101 when applying DPATCH of different types

Faster R-CNN plane bike bird boat bottle bus car cat chair cow table
no DPATCH 74.80 80.20 77.60 64.50 61.50 81.10 86.70 86.40 55.70 89.30 69.60
untargeted DPATCH 0.10 3.20 4.30 0.00 5.40 0.00 9.80 0.00 11.20 10.60 5.20
targeted DPATCH 0.02 0.00 0.00 0.00 0.00 0.53 0.08 0.61 0.00 0.02 0.00
YOLO trained DPATCH 2.27 0.51 0.87 2.27 0.78 1.52 4.55 0.62 1.17 3.03 2.10

dog horse motor person plant sheep sofa train tv mAP

87.40 84.50 80.00 78.60 47.70 76.00 74.60 76.60 73.70 75.10

0.30 0.59 0.00 1.69 0.00 4.68 0.00 0.00 1.00 2.9

9.09 0.16 0.00 9.09 0.16 0.00 9.09 0.00 0.00 0.98

2.02 3.37 1.30 0.94 0.53 0.43 3.03 1.52 1.52 1.72

Table 2: Results on Pascal VOC 2007 test set with YOLO when applying DPATCH of different types

YOLO plane bike bird boat bottle bus car cat chair COW table
no DPATCH 69.50 75.60 64.00 52.30 35.60 73.40 74.00 79.60 42.10 66.10 66.90
untargeted DPATCH 0.00 1.50 9.10 1.30 9.10 0.00 9.10 0.00 9.10 9.10 0.40
targeted DPATCH 0.00 4.55 9.09 0.00 0.09 0.00 9.09 1.82 0.01 0.00 0.36
Faster R-CNN trained DPATCH 0.01 0.00 0.23 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00
dog horse motor person plant sheep sofa train tv mAP
78.10 80.10 78.20 65.90 41.70 62.00 67.60 77.60 63.10 65.70
0.00 0.00 0.00 0.00 9.10 Q.10 0.00 0.00 1.00 0.00
0.01 0.00 0.00 1.73 0.00 0.00 1.07 0.00 9.09 1.85
0.00 0.03 0.00 0.07 0.00 0.00 0.00 0.00 0.01 0.02
Per class mAP after DPatch attack Conclusions
EEEbike EElboat MMcow ] ;
. - : Perform effective attacks
a0 Small in size
o . .
<20 Location-independent
10 H
Great transferability
0
WO & o ® P P
Qé‘d- o G'b,ccs\- o & Pt s q@ € 8 a“’

Xin Liu, et al. Duke University. DPatch: An Adversarial Patch Attack on Object Detectors. AAAl Workshop 2019.



Tasks: Video Analysis

[0 Motion Excited Sampler
e Attack video models: Motion recognition Original

and classification (Biking)
» sparked prior: Use inter-frame knowledge
and sparked by motion information Noise
Adversarial
(Walking
with dog)
Pipeline of generating adversarial examples
Random Noise Perturbation 1o Loss curve comparison
Iterative 3 L
Optimization ‘_;E 0.9
[
So.s8
(@]
o=
< 0.7 Multi-noise
§ One-noise
— 0.6 '
Clean video frames Sparked prior

0.0 05 1.0 15 20 2.5 3.0 3.5
Iterations le3

Hu Zhang, et al. University of Technology Sydney. Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior. ECCV 2020.



Tasks: Video Analysis

0 Experimental Settings
Evaluate on different
dataset/model
e (Calculate success rate

* Count average number of queries

Untargeted attacks on several datasets

Dataset / Model Method ANQ I3DSR(%) ANS‘SBE&;{(%)
E-NES [11] 11,552 86.96 1,698 99.41

E-Bandits [11] 968 100.0 435 99.41

SthSth-V2 V-BAD [17] 7,239 97.7 495 100.0
ME-Sampler (OF) 735 98.90 315 100.0

ME-Sampler (MV) 592 100.0 244 100.0

E-NES [ ] 13,237 84.31 19,407 76.47

E-Bandits [11] 4,549 99.80 4,261 100.0

HMDB-51 V-BAD [ ] 5,064 100.0 2,405 100.0
ME-Sampler (OF) 3,306 100.0 842 100.0

ME-Sampler (MV) 3,915 100.0 831 100.0

E-NES [ ] 11,423 89.30 20,698 71.93

E-Bandits 1] 3,697 99.00 6,149 97.50

Kinetics-400 V-BAD [17] 4,047 99.75 2,623 99.75
ME-Sampler (OF) 3,415 99.30 2,631 98.80

ME-Sampler (MV) 2,717 99.00 1,715 99.75

E-NES [17] 23,531 69.23 41,328 34.65

E-Bandits [ :] 10,590 89.10 24,890 66.33

UCF-101 V-BAD [17] 8,819 97.03 17,638 91.09
ME-Sampler (OF) 6,101 96.00 6,598 97.00

ME-Sampler (MV) 4,748 98.02 5,353 99.00

Comparisons of targeted attack on SthSth-V2 and HMDB-51

—1 ples lez
g = Motion Vectar 1.4 = Motion Vector ~1.0,L€5 le2
< [ ==l =13 B Flow g | =3 Motion vecar 14 B Motion Veclor
EG.B 1yrgy R UEAD #L . V-BAD kS B Flow 52415 — —T
C 1 966 Q8,87 w0.8 £12 BN V-BAD
- Gz 9395 MH L =
S’ﬂ-ﬁ E 51.0 7 1637 1638 12 981757 15
e 0.6 -
a Z 20.8
£ 0.4 @ [
3 E0.4 206

3530 E F:
307 ju - :
i 0.2 =
g [ Vo2
=0.0 130 TSNZD 13D 2

0.0 0.0 13D TSNZD

(i} (it

(i)

(a) SthSth-V2 (b) HMDB-51

Hu Zhang, et al. University of Technology Sydney. Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior. ECCV 2020.



Task: Natural Language Processing

[0 DeepWordBug

effectively generate small text
perturbations in a black-box setting
for deep-learning classifier

output

4

[ think he's stupid.

input

Algorithm 1 DeepWordBug Algorithm
Input: Input sequence x = x1x2 .. . x5, RNN classifier F(-),

Scoring Function 5(-), Transforming function T(-), maximum Positve review
allowed pertubalion on edit distance e. n
I: fori=1.ndo
2. scores[i] = S(x;; x) (1) Deep Learning Model
3 end for . . - - —
4: Sort scores into an ordered index list: Ly .. L, by descending Original | T T |
fcore sample: This film has a special place in my hE?{t
A el S S
6 cost =0,j=1 Adversarial  This film has a special plcae in my herat
7: while cost < £ do sample: ] | S | r * T .
g cost = cost + Transform(x] ) s ' .
o it L; (2) Deep Learning Model
10: end while
11: Return x’ v
Negative review

https://github.com/thunlp/TAADpapers

Gao J, LanchantinJ, Soffa M L, et al. Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers[J]. IEEE, 2018.



Tasks: Speech Recognition

[ Targeted Attack on Speech-to-Text

« A waveform adds a small perturbation lllustration of Speech-to-Text
* Making the result transcribe as any desired ‘it was the
best of times,
it was the
ta rget phrase worst of times"
0 Connectionist Temporal Classification
* A method of training seg2seq neural
network without the knowledge of
alignment between input and output it is a truth
universally
sequences. acknowledged
that a single"
e Algorithm:

CTC_Loss(f (x),p) = —logPr(p|f(x))

N. Carlini, D. Wagner. UC Berkeley. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. arXiv 1801.01944.



Tasks: Speech Recognition

original IR [original, no speech is recognized]
adversarial “speech can be embedded in music”
Y\
.. “now | would drift gently off to dream land”
original IS
: 1 7~ “my wife pointed out to me the brightness of
adversarial

the red green and yellow signal light”

https://nicholas.carlini.com/code/audio_adversarial_examples/



Tasks: Reinforcement Learning

O Adversarial Policies
* Game detail: Two player & zero sum games
» Affect observation of the victim, leading to “bad” actions.
* The victim policy mt, is held fixed
* Reduces to a single player MDP
* Find an adversarial policy i, maximazing the rewards

lllustrative snapshots of a victim against normal and adversarial opponents

g

1

versaria

86%

Ad

Adam Gleave, et al. UC Berkeley. Adversarial Policies: Attacking Deep Reinforcement Learning. ICLR 2020.



Tasks: Reinforcement Learning e

https://adversarialpolicies.github.io/

Opponent =0 Ties=0 Victim = 0 Opponent = 0 Ties=0 Victim =0
Normal (ZooO1) Normal (ZooV1) Adversary (Advl) Normal (ZooV1)

Opponent = Ties = Victim =0 Opponent = Ties = Victim =
Normal (20007) Normal (ZooV’) Adversary (Adv7) Normal (ZOOV7)

Adam Gleave, et al. UC Berkeley. Adversarial Policies: Attacking Deep Reinforcement Learning. ICLR 2020. 50
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Adversarial Examples in Physical World

leference_s from Digital World | Views Digital Physical
* Environment * Sampling
* Noise + Lifecircle Environment Slmpieians Complex
 |Information e Risk fixed P
Scenarios )
Noise _None/ Natural
Simulated

Information White-box Black-box

Sample
Sampling Dateset Imaging
Collect '
Life circle Traln( Evaluation
Evaluation
SEECCLBES: CEURINCIIE | &5 &)
i 1] o i
Risk Limited Huge
SPASTT - S o e - S R4
e Train
rr(j o ‘ Physical adversarial examples bring

more severe safety threats

Models




Adversarial Example: Unified Definition

Adversarial examples are now
threatening the safety and
security of Al applications in
physical world!

The characteristics of the digital world and Redefinition of adversarial examples:

physical world adversarial examples as: y¥ £ Fy(x+7) st |x+7] € R

* For human, it disguises as a normal example where X is the human recognizable space,
* For models, it misleads the model predictions and | ||| is some kind of measure(i.e.,
perturbation magnitude, patch size)

Adversarial perturbation Adversarial patch



Attacks in the Physical World: Overall View

Physical attacks aim to generate adversarial perturbations by modifying the
visual characteristics of the real object in the physical scenario

Due to the strong correlation to real-world Al applications, we
classify the physical attacks through different Al tasks

y 54




Summary

Method Author Application scenarios| Year

Face Recognition Attack Sharif, Mahmood Face recognition 2016
RP2 K. Eykholt Auto-driving 2018
ShapeShifter Shang-Tse Chen Auto-driving 2018
PS-GAN A. Liu Auto-driving 2019
Persion Detector Attack Thys, S. Object Recognition 2019
AdvHat Komkov, S. Face recognition 2019
AdvCam Duan, Renjie Object Recognition 2020
Bias-based Attack Liu, A. iggr?t‘i?cc;?iiz] 2020
UPC Huang, Lifeng Surveillance system 2020

Dual Attention Suppression Attack Wang, Jiakai Surveillance system 2021




Auto-driving: Road Signs Attack

[J Robust Physical Perturbation (RP2)

* Physical World Challenges: e
. .. e sical Dynamics by Sampling
* Environmental Conditions from Distribution

SPEED
LiMIT

45

(
t Target

* Spatial Constraints .'@@M!
4 _

* Physical Limits on Imperceptibility

* Model the distribution under both physical .

and digital transformations X" ot
* Introduce a mask M, to generate graffiti
* Non-Printability Score (NPS)

Perturbed Stop Sign Under
Varying Distances/Angles

Better practical results in the physical world

argmin A|| M, - d||, H NPS

argmin A|[0||, + J(fo(z +9),y%) —> 8
5

HE;,~xvJ(fo(xi + Ti( Mz - 6)),y")

Normal Robust

Better adaptive effectiveness in the physical world

Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." CVPR. 2018.s




Auto-driving: Road Signs Attack

Table 2: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign (subtle attacks) and
a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image, the top two labels and their associated
confidence values are shown. The misclassification target was Speed Limit 45. See Table 1 for example images of each attack.
Legend: SL45 = Speed Limit 45, STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

[ Against two standard-architecture
classifiers

570 SL45(0.86) ADL (0.03) STP (0.40) SL45(0.27) SL45(0.64) LE(0.11)

° LlSA_CNN (91% acc. on LlSA) : i:) SL45(0.86) ADL(0.02) STP(0.40) YLD (0.26) SL45(0.39) STP(0.30)

SL45(0.57) STP(0.18)  SL45(0.25) SA(0.18) SL45(0.43) STP(0.29)

Camouflage-Art

0 57 45° SL45(0.80) STP(0.09) YLD (0.21) STP(0.20) SL45(0.37) STP(0.31)
57 60 SL45(0.61) STP(0.19)  STP(0.39) YLD (0.19) SL45(0.53) STP(0.16)
* GTSRB-CNN (95.7% acc. on GTSRB)
107 0° SL45(0.86) ADL (0.02) SL45(0.48) STP(0.23) SL45(0.77) LE(0.04)
107 15° SL45(0.90) STP(0.02)  SL45(0.58) STP(0.21) SL45(0.71)  STP (0.08)

DTWO types of attack 107 30° SL45(0.93) STP(0.01) STP(0.34) SL45(0.26) SL45(0.47) STP (0.30)

1570 SL45(0.81) LE(0.05) SL45(0.54) STP(0.22) SL45(0.79)  STP (0.05)
157 15 SL45(0.92) ADL(0.01) SL45(0.67) STP(0.15) SL45(0.79)  STP (0.06)

* Poster attack (100% asr. on LISA-CNN)

20 15 SL45(0.88) STP(0.02)  SL45(0.70) STP(0.08) SL45(0.67)  STP(0.11)

Py Stlcker attack (Over 80% asr. on GTSRB_CNN) i:; 8 SL45(0.76) STP(0.04) SL45(0.58) STP(0.17)  SL45(0.67) STP (0.08)

SL45(0.71) STP(0.07)  SL45(0.60) STP(0.19) SL45(0.76)  STP(0.10)
407 0° SL45(0.78) LE (0.04) SL45(0.54) STP(0.21) SL45(0.68) STP (0.14)

Table 3: A camouflage art attack on GTSRB-CNN. See
example images in Table 1. The targeted-attack success rate
is 80% (true class label: Stop, target: Speed Limit 80).

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Subtle Poster Camouflage  Camouflage At~ Camouflage Art

Subtle Poster " p.oht Tum Grafiti (LISA-CNN)  (GTSRB-CNN)

Distance/Angle

— Distance & Angle  Top Class (Confid.) Second Class (Confid.)
5007 Speed Limit 80 (0.88)  Speed Limit 70 (0.07)
r 5 15° Speed Limit 80 (0.94)  Stop (0.03)
- 57 30° Speed Limit 80 (0.86)  Keep Right (0.03)
S 5r 45° Keep Right (0.82) Speed Limit 80 (0.12)
5 60° Speed Limit 80 (0.55)  Stop (0.31)
. ’ 107 0° Speed Limit 80 (0.98)  Speed Limit 100 (0.006)
e 107 15° Stop (0.75) Speed Limit 80 (0.20)
' 107 30° Speed Limit 80 (0.77)  Speed Limit 100 (0.11)
o3 157 0° Speed Limit 80 (0.98)  Speed Limit 100 (0.01)
103 15/ 15° Stop (0.90) Speed Limit 80 (0.06)
207 0° Speed Limit 80 (0.95)  Speed Limit 100 (0.03)
o o 207 15° Speed Limit 80 (0.97)  Speed Limit 100 (0.01)
257 0° Speed Limit 80 (0.99)  Speed Limit 70 (0.0008)
Toracied Aok Socoos 0% TR TR 307 0° Speed Limit 80 (0.99)  Speed Limit 100 (0.002)
- 40 0° Speed Limit 80 (0.99)  Speed Limit 100 (0.002)

kholt, Kevin, et al. "Robust physical-world attacks on deep learning visual classification." CVPR. 2




Auto-driving: Road Signs Attack

OO PS-GAN

e Traffic signs with scrawls and patches on them
are quite common on the streets

* GAN based adversarial patch attack
e Attention mechanism
e Adversarial generation process
* High perceptual correlation

1. Patch to patch translation (i node 1T
2. Adversarial generation process '

Lan(G, D) = Ey[logD(8,x)] + Ey., [log(1— D(8,x + G(z, 6)))]

3. High visual fidelity & Perceptual correlation
Lpatch((s) = E5||G(5) - 6”2

minmax Leay + @ * Lpgecn + B+ Laaw _ _

¢ D Figure 2: The framework of our PS-GAN consists of a gen-

GAN loss + patch loss + adversarial loss erator (&, a discriminator D and an attention model M, at-
tacking a target model F'.

Liu, Aishan, et al. "Perceptual-sensitive gan for generating adversarial patches." AAAI Vol. 33. No. 01. 2019.



Auto-driving: Road Signs Attack

e Digital world attacks e Real-world attacks
1. Real-world traffic sign
[ ! Target Models | 2. Print & Stick & Photo
VY | VGGI16 | VYiren | VGG1644y, VY | VGG16 | ResNe .
VY 125% | 25.0% 37.i5'7/i:n 12.5% " 15.6% | 31.3% 37.5%t 3 Accuracy drop. 867% - 172%
VGG16 1.6% | 31.3% 15.6% 37.5% 1.6% | 31.3% 34.4%

VYirelu 47% | 25.0% 7.8% 23.4% 125% | 29.7% | 26.6%
VGG164pp | 3.1% | 250% | 32.8% 34.4% 18% | 25.0% | 25.0%
VY 94% | 257% | 14.1% 25.0% 141% | 28.1% | 37.5%
VGG16 3.1% | 37.5% 9.4% 34.4% 18% | 314% | 21.9%
ResNet 3.1% | 15.6% 4.7% 21.9% 94% | 26.6% | 34.4%

Source Models

| | GTSRB | ImageNet |

Accuracy without patches 89.5% 87.6%
Accuracy with seed patches 85.6% 67.6%
Accuracy with adversarial patches | 12.5% 25.0%

e Attention visualizations .

4 20
40
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80

100

] 120
0 20 40 60 80100120 0 20 40 60 80 100120




Auto-driving: Road Signs Attack

Birdhouse, 0.99

COAdvCam

e Able to fool DNN while natural to human

e Can control the physical appearance of
the camouflage | @ _

* (Can also be used to protect private I -
information

Soccer ball, 0.99

Revolver, 0.83

(a) Target image (b) Style (c) Adversarial examples
min ((Ls + L. + L,,) +max A - Lyg,(0+ T(2')),
x’ TET

D. =Y |6(F*) - G(F@)|_,

€S _ _ 2 N Adversarial Camouflage Attack
Le= Y ||Fite) - i), FUN [

t€cy ’ w . I e

1 Target Image _M - :“ [ Adversarial Image

L= 3 (@l — @is1.0)* + (s — mige1)), 17— h

Style Loss L,

lo x')), for targeted attack Final loss:
O 5 =

—log(py(z")), for untargeted attack,

Target Style

style loss + content loss + smoothness loss + adversarial loss

Duan, Ranjie, et al. "Adversarial camouflage: Hiding physical-world attacks with natural styles." CVPR. 2020.



Auto-driving: Road Signs Attack

Camouflage under different settings

Targeted attack

— 40(top-1)
_+— —— 40(top-5)
— 80{top-1)
- BO(top-5)
—— 120(top-1)
— 120(top-5)

Success rate

(a) Original (b) L (c) Lo+L, (d) All an P
Adversarial strength A
Figure 5: Ablation of the 3 camouflage losses: (a): original
images with intended camouflage style at the bottom right
corner; (b) - (d): camouflaged adversarial examples using

different loss functions.

e000 20000

Untargeted attack

=

40(top-1)
~—— 40(top-5)
— 80(top-1}
e 80(top-5)

_— 120(top-1)
T 120(top-5)

Success rate
a

ap =
2000 4000 000 8000 10000

Adversarial strength A

Figure 6: Ablation of adversarial strength A and region size:
success rate of untargeted (left) and targeted attack (right).

Figure 11: Adversarial traffic sign with 3 styles of stains.

Visualization of AdvCam and comparison to other methods

Figure 9: Camouflaged adversarial images crafted by our AdvCam attack and their original versions.

Duan, Ranjie, et al. "Adversarial camouflage: Hiding physical-world attacks with natural styles." CVPR. 2020.

(a) AdvPatch (b) PGD-128 (c) AdvCam
Figure 10: Top: Adversarial wood texture recognized as

street sign. Bottom: Adversarial logo on t-shirt.




Object detection

] Problem

* All of patch attacks contain no intra-class
variety

] Goal

* Generate a small patch that is able to hide a
person from the person detector

* Minimizing object loss is the most effective

e Attacked Yolo-v2 in real world

Object loss or class loss

Loby = Max(Ponjzs Pobizs -+r p.,.,,..)]
Ldl — max(pdslv Peis2s «eor pdm)

Object scare +
class scores

Detector

Bps Arg buees o

e .—t-m—wn.:_.:
O Eaﬁ N
> .
mE=

- - ——

*
",
_ p—

Thys, S., et al. "Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detection." IEEE (2019).



Object detection

Output on the Inria testset Comparison of different
approaches in recall

1.0

0.8

=
o
f

Precision

L
P

—— CLEAN: AP: 100.0%
—— NOISE: AP: 94.02%
—— OBJ-CLS: AP: 42.8%
—— OB}: AP: 25.53%
—— CLS: AP: 82.08%

0.2 1

0.0 0.2 0.4 0.6 0.8 1.0

Recall
Approach | Recall (%)
CLEAN 100
NOISE 87.14
OBJ-CLS 39.31
OBJ 26.46
Minimizing object loss created effective patches ~ ©&° L

Thys, S., et al. "Fooling Automated Surveillance Cameras: Adversarial Patches to Attack Person Detection." IEEE (2019).



Face recognition

] Attack Face Recognition

* Inconspicuous camouflage (e.g., a glass)
to attack physical-world face ID system

 Can be used in dodging and
impersonation

[ M

argmin Z softmazloss(f(x +1),1) TV (r) = Z ((?',;._; —Tit1,5)° + (rij — Tija ,)2) NPS(p) = H p—p

T€X i peEP

Robustness Loss Smoothness Loss Printability Loss

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." ACM SCCCS. 2016.



Face recognition

O Experimental setting

* Digital and physical experiments
e Extension to black-box models

* Particle Swarm Optimization

Created eyeglass

Oricinal Overlay Accessories
rigina . .
g perturbation perturbation
Ezperiment #  Area perturbed GGoal Model — # Altackers  Success rale
1 Entire face Dodging DNN 4 20 100.00%
2 Entire face Impersonation  DNN, 20 100.00%
3 Eyeglass frames Dodging DNN, 20 100.00%
4 Eyeglass frames Dodging DNNi 10 100.00%
5 Eyeglass frames Dodging DNN¢: 20 100.00%
(§ Eyeglass frames Impersonation  DNN, 20 91.67%
7 Eyeglass frames Impersonation DNNg 10 100.00%
8 Eyeglass frames  Impersonation  DNNe 20 100.00%
High success rate in real-world
Subject (attacker) info Dodging results [mpersonation results
DNN | Subject Identity SR E(p(correet-class)) Targel SR SRT E(p(target))
Sa 3rd author 100.00% 0.01 Milla Jovovich 87.87% AR A8% 0.78
DNNg Sp 2nd author 97.22% 0.03 Se 88.00% 75.00% 0.75
Se 1st author 80.00% 0.35 Clive Owen 16.13% 0.00% 0.33
Sa 3rd author | 100.00% 0.03 John Malkovich  100.00%  100.00% 0.99
DNNea Sn 2nd author | 100.00% <0.01 Colin Powell 16.22% 0.00% 0.08
Se 1st author 100.00% <0.01 Carson Daly 100.00%  100.00% (.90

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." ACM SCCCS. 2016.



Face recognition

[0 AdvHat

* A printed paper to attack real-
world commercial Face ID system.

e Off-plane transformation to
imitate shape deformation

the whole pipeline of the attack

FGSM

|

& Off-Plain Sticker Transformation

TV loss
Loss Function -~
GT fing Cosim: oi:;milanty

___HR
HA

Komkoyv, S. , and A. Petiushko . "AdvHat: Real-world adversarial attack on ArcFace Face ID system." (2019).



Face recognition

Example of the adversarial stickers

—

Baseline and final similarity for various Differences between baseline and
shooting conditions final similarities of one attack on
— different models
X . &
06 R o ¥ % 3 X * X X X o
% % ¥ X U * % 0.9 .
X X X x x w 0.8
o4 o O . 23 3 @© ~ o~ X 0 ~ — 8
< < m MmO ™ < = < < m m =
= (=] o 1 = S (=) = o o o o @ 0.7 U
E € ] EO EgQ ¥ £9 € S Eo E E
© ° 5g © oY ©f ©. © 5, © ° 06
¥ Fo X0 x| | X[ Xg [ Fo I9 3% 205
N A o - o S o] o O %
8 o) o o 0 g 04
0.0 &
§o3
Oop.2
o ? 0.1
\\\O“ 3 \\\0(‘1 \x,\()"\‘5 \(\0“ . \1\0‘\5 \\\()"\6 \U()"\“l \{\0('\6 \Uoﬂg ) \0"\x \ oo W 0.0
o™ o o o o o o o comf ot condt LResNetiOOE  LResNetS0E  LResNet34E  MobileFaceNet

Komkoy, S., et al. "AdvHat: Real-world adversarial attack on ArcFace Face ID system." (2019).




Commodity identification

[IBias-based Attack

* |n Automatic Check-Out, items are often
tied with patch-like stickers or tags
* Perceptual bias

* Extract textural information from multiple
hard examples
* Semantic bias
* Prototypes, contain the most
representative semantics

Fusion

]
)
I
]

Attention A N
: Transformation Module a

i . — ( - )
Fused Prioe & : E . . ' Pod

___________________

Ly=L.+ AL,

L, =E; [HG ") - G( .1'!’. ||2} .
X .' I; = argmax — Z max (0, margin — S;(x) + S.(x))?,
ZF!A Fﬂ- c#r

L,=E, [loﬁyh 1, L; = Ej saas[P(c = t|I') — max(P(c # t|I"))].

Perceptual bias Semantic bias

Liu, Aishan, et al. "Bias-based universal adversarial patch attack for automatic check-out." ECCV.. 2020.



Commodity identification

- Top-1

- Top3 0.9 =1s
Top-S 0.8l AdvPatch
O Digital world attack : =
tal wo attac =L
59.46 58.9
igital wor - ..

* Attack RPC dataset (the largest ACO A BT
related dataset) A 1 ‘ _l

(a) White-box Attack (b) Training Process

Accuracy %
w
O

*  White-box
Fig. 3. (a) shows the White-box attack experiment in the digital-world with ResNet-
* BIaCk'bOX 152. Our method generates the strongest adversarial patches with the lowest classifi-
cation accuracy. (b) denotes the training process of different methods

Table 1. Black-box attack experiment in the digital-world with VGG-16, AlexNet,
and ResNet-101. Our method generates adversarial patches with strong transferability
among different models

Model Method top-1 top-3 top-5
AdvPatch 73.82 90.73 94.99
VGG-16 RP2 81.25 94.65 97.10
PSGAN 74.69 91.25 96.12
Ours 73.72 91.53 95.43
AdvPatch 51.11 72.37 79.79
AlexNet RP> 68.27 86.49 91.08
PSGAN 49.39 72.85 82.94
Ours 31.68 50.92 60.19
AdvPatch 56.19 80.99 91.52
ResNet-101 RP, 73.52 93.75 98.13
PSGAN 51.26 79.22 90.47
Ours 22.24 51.32 60.28

Liu, Aishan, et al. "Bias-based universal adversarial patch attack for automatic check-out." Proc. Eur. Conf. Comput. Vis.. 2020.



Commodity identification

O Physical world attack
e Attack Taobao and JD APPs

Adversarial
Patch

adversarial

Adversarial
Patch

Storage rack

Liu, Aishan, et al. "Bias-based universal adversarial patch attack for automatic check-out." Proc. Eur. Conf. Comput. Vis.. 2020.



Commodity identification




Surveillance system: person detection

Ol Universal camouflage pattern (UPC) Region Proposal Network attack (rpn)
Classification & Regressor attack (cls/reg)
e (Can attack all instances in same category argmin E (Lrpn + MLets + AoLreg) + Leo(61),
Ad X

. . _ ot M — Ad.
* Add semantic constraint to for naturalness Lepn = B _(L(si,y7) + silldi — Adalp),

LCES = E [C(p)o+ L (C(p)yt)']
p~P’ C(p)maz €0

L-reg — Z ”R(p)o — A&“P

C(p)max €0

Overall paradigm

Constraint / - . Camera Setting in Attack Scene
b C&R Attack Print on Garment — 3
+ | T
P S . 000 =
Classification 2 i
; ! I o & 3 ° Y
Training set X' : ; . | Regression | - L)
K /’/" i
3 1 Transform T, : - [ ] B e
<Py c — P ’ 407
i. R % ‘ E@ .................... : %
___________ °
(a) Tl aining in Dloztal Space (b) Attacking in Physical Space

Huang, Lifeng, et al. "Universal physical camouflage attacks on object detectors." CVPR. 2020.



Surveillance system: person detection

Outperforms the state-of-the-art method

Table 2. Average precision po.s in virtual scene experiments after
attacking faster r-cnn. Note that po s is averaged over all view-

Successfully Attacked Fast-RCNN

Table 4. Average precision po 5 in stationary testing after attacking faster r-cnn. We test on a total of 6 different poses (i.e., standing, sitting.

leg lifting. waving hands, fork waist, shaking head). Network FRVGGI6-0712 FR-RESI01-0712
Network FR-VGG16-0712 FR-RES101-0712 Schemes [ Stan::na S Slanf]ing -
— — - — 2 3 wg (Drop) 2 vg (Drop)
Schemes Standing Sitting Standing Sitting ~Orgmal [ 097 007 10 0980 [ 009 0% L0 099()
_ LI L2 L3 Avg(Drop) LT L2 13  Avgrop) [ LI L2 L3 Avg@rop) LI L2 L3 Avg(Drop) Naive | 097 097 099 097(001) | 099 099 099  0.99(0.0)
Original 1.0 1.0 1.0 1.0 (=) 1.0 1.0 1.0 1.0(-) 1.0 1.0 1.0 1.0(-) 1.0 1.0 1.0 1.0(-) Natural 095 096 098 096(0.02) | 0.97 097 098 097 (0.02)
Random | 1.0 094 1.0 098002 1.0 10 10 1L.0(0.0) | 094 1.0 10 0980002 1.0 10 10 1.0 (0.0) 3Paterns | 064 036 018 0390.59) [ 073 069 070  0.69(0.30)
3-Paterns | 072 0.61 067 067(0.33) 083 078 067 076(0.24) | 083 067 067 072(0.28) 072 078 072 0.74(0.26) T-Paterns | 055 033 022 037(0.61) | 051 048 064 0.54(0.45)
7-Patlerns | 0.67 056 056 0.59(0.41) 061 050 050 054(046) | 0.61 056 061 0590410 061 067 050  0.59 (D41 S-Patterns | 015 003 002 0070091 | 010 009 013 011088
S Patterns | 0.22 011 017 0.17(0.8%) 028 017 022 022(0.78) | 022 022 011 019(0.81) 028 022 022 026(0.74) Schemes |7 W”{‘;“E wamey | o2 W“'ﬁ;“g g Do
Schemes Fork Waist Leg Lifting Fork Waist Leg Lifting “Orgmal | 093 094 099 0950 [ 098 099 10 0991)
L1 L2 L3  Avg(Drop) LI L2 L3  Avg(Drop) | LI L2 L3  Avg(Drop) LI L2 L3 Avg(Drop) Naive 092 094 096 094(0.01) | 098 097 098 098 (0.01)
Original 0 10 10 ) 0 10 10 00 0 10 1.0 .00 0 10 1.0 0O Natwal | 091 093 095 093(0.02) | 098 099 098 098(001)
Random | 1.0 1.0 1D 1.0 (0.0) 0 L0 1.0 1.0 (0.0) 0 10 10 1.0 (0.0) 1.0 10 10 1.0 (0.0) 3Paterns | 037 026 016  0.26(0.69) [ 04 050 050 048051
3-Patterns | 078 072 067  072(0.28 072 078 072  074(0.26) | 083 072 072 076(0.24) 067 078 067  0.71(0.29) TPatterns | 028 015 Ol6  023(0.72) | 031 033 034 033(0.66)
7Patlerns | 0.61 050 056 0.56(0.44) 056 0356 050 0.54(0.46) | 061 036 056 0.57(043) 067 050 056  0.57(0.43) SPatterns | 006 0.05 S”—”‘ 004091 | 005 006 S”—”" 006 (093
8Pallerns | 0.28 017 0.7 020(080) 028 028 022 026(0.74 | 028 022 022 024076 033 033 022 030(0.70) Sehemes | — 17— 13— g Oep | T L A ron
Schemes Rasing Hands Shaking Head Rasing Hands Shaking Head Original 007 099 099 0980 T0 009 099 0991-)
L1 L2 L3 Avg (Drop) L1 L2 L3 Avg (Drop) L1 L2 L3 Avg (Drop) L1 L2 L3 Avg (Drop) Naive 093 094 095 094(004) | 093 092 093  093(0.06)
Original 0 10 10 100 0 10 10 100 0 10 10 1.000) 10 10 10 .00 Nawral | 094 094 098 095(0.03) | 0.97 098 098 098(001)
Random | 0.94 1.0 1.0 098002 1.0 10 10 1.0 (0.0) L0 10 10 1.0 (0.0) 1.0 1.0 10 1.0(0.0) %?gﬁ:g: 3§§ g-?é 323 g;g g;% 37,3 g-;; 37,3 37,; Eggﬂ
3-Paterns | 0.89 078 083 083017 078 078 067 074(0.26) | 083 089 083 085(0.15) 072 078 078 0.76(0.24) - s | 0 - 63 0740029 1 0. g : -78 (0.2
7Patlerns | 072 061 061 065(0.35) 061 061 056 059(0.41) | 089 061 056 0.69(0.31) 056 061 056 0.57(0.43) SPaterns | 060 047 032 046(052) | 049 057 062 0560439
S-Paterns | 0.39 039 028 035(0.65) 022 028 011 02000.80) | 039 033 033 035(0.65) 022 022 017  0.20(0.80) . . . .
Table 3. Performance comparison with prior arts of physical at-
Table 5. Average precision po.s in transferability testing. First tacks under different settings. Note that pg 5 is averaged over all

seven rows show the results of cross-training transfer testing, and
rest five rows display the cross-network transfer’s results (bold in

points of each pattern scheme under 3 brightness conditions.

viewpoints of 8-pattern scheme.

! Network FR-VGG16-0712
“Network™ column). Pose Standing Walking Sitting
Network Original F:QRTVGG]%OHE FﬁiRES]O]gDHQ UPCrclours) 007 (0.91)  0.04(0.91)  0.46(0.52)
verage (Drop) verage (Drop) UPC,(ours)  0.65(032) 033(0.62) 076 (0.22)
FR-VGG16-0712 0.95 0.04 (0.91) 0.10 (0.85) CLSrclours)  0.17(0.80)  0.06(0.89)  0.58 (0.44)
FR-RES101-0712 0.99 0.78 (0.21) 0.06 (0.93) Ss [f]2 0.69(0.28)  0.39(0.56)  0.78(0.20)
FR-VGG16-07 0.95 0.08 (0.87) 0.11 (0.84) ERP? 7] 0.84(0.13)  048(0.47)  0.87(0.11)
} FR-RES101-07 0.99 0.51 (0.48) 0.10 (0.89)
FR-RES50-14 Lo 0.85(0.13) 078 (0.22) Network FR-RES101-0712
D detected as car D detected as others D undetected FR-RES152-14 1.0 0.62 (0.38) 0.43 (0.57) Pose Standing Walking Sitting
: . . . FR-MN-14 0.99 0.51 (0.48) 0.25 (0.74)
Figure 7. The results of attacking Volvo XC60 (top row) and RFCN-RES101-07 0.98 0.64 (0.34) 0.41 (0.57) UPCre(ours)  0.11(0.88) 0.06(0.93)  0.56(0.43)
Volkswagen Tiguan (bottom row). The generated camouflage SSD-VGG16-0712 0.75 0.13 (0.62) 0.16 (0.59) UPCr(ours)  073(0.26)  042(0.57)  0.86(0.13)
. - ; i . - Yolov2-14 1.0 0.59 (0.41) 0.38 (0.62) CLSrc(ours)  030(0.69)  0.16(0.83)  0.65(0.34)
patterns fool detectors to misrecognize the car as bird or person. Yolova-14 10 0,69 (0.31) 071 (020) 551 083(0.16) 047 (0.52) 0.88(0.11)
Retina-14 1.0 0.72 (0.31) 049 (0.51) ERP?[f] 0.79(0.20)  0.44(0.55)  0.91(0.08)

Huang, Lifeng, et al. "Universal physical camouflage attacks on object detectors." CVPR. 202




Surveillance system: person detection

Successful and natural Physical-world attack

FR-VGG16-0712 FR-RES101-0712

[ detected as person [ detected as target label I cetected as others | undetectd

detected as car detected as others undetectd
Figure 12. More qualitative results of FR-VGG16-0712 and FR-RES101-0712 on in physical environment. These universal camou- : D

e k % Figure 14. More experimental results of fooling the “car” category in physical world. We attack two different cars, i.e.. Volvo XC60
flage patterns are generated using FR-VGG16-0712 and FR-RES101-0712, respectively. Each row applies different pattern schemes (i.e.. and Volkswagen Tiguan.
3/7/8-Pattern schemes), and captured in different viewpoints and backeround environments. -

Huang, Lifeng, et al. "Universal physical camouflage attacks on object detectors." CVPR. 2020.



Surveillance system: vehicle detection

C1Dual Attention Suppression Attack

» Existing works generate perturbations with a
visual suspicious appearance

* Model Attention Distraction
* Distract model attention from the salient objects

« Human Attention Evasion L, — iz G
* Share similar visual semantics with seed context

i Human Attention Evasion
1

b i :

Weight tensor

B+1 - 1

B+1 - 1 .

___________________________________________________________________________

Wang, Jiakai, et al. "Dual Attention Suppression attack: Generate Adversarial Camouflage in Physical World." CVPR,2021.



Surveillance system: vehicle detection

Classification Object Detection
Accuracy (% P@0.5 (%
Method o rtion-V3  VGG-19 yR(esIlIet— 152 DenseNet Method  —550V5  SSD Faster lng)TNN Mask R-CNN
. . Raw 7436 40.62 73.51 71.91 Raw 9207  81.54 86.04 89.24
Digital MeshAdv 4231 32.44 3533 58.04 MeshAdv 7245 66.44 71.84 R0.84
world CAMOU 47.51 31.46 48.93 57.56 CAMOU 74.01 7381 69.64 76.44
UPC 42.40 38.00 48.18 65.87 UPC 82.41 74.58 76.94 81.97
Ours 39.86 30.18 3249 55.42 Ours 7258  65.81 62.11 70.21
Accuracy (% P@0.5 (%
Method Inception-V3  VGG-19 yR(esllJet— 152  DenseNet Method Yolo-V5 SSD Faster l(i-éNN Mask R-CNN
Phvsical Raw 58.33 4028 41.67 46.53 Raw 100.00 9028 68.06 93.75
ysiCa MeshAdv 40.28 34.03 38.89 36.11 MeshAdv ~ 100.00 6111 56.25 63.19
world CAMOU 40.28 2917 31.25 45.14 CAMOU 9931  61.11 6181 63.19
UPC 35.41 33.33 33.33 41.67 UPC 100.00  63.19 52.08 61.81
Ours 31.94 27.78 29.86 34.03 Ours 92.36 56.25 44.44 54.86

before

after

pigeon

Percent (%)

Question  —7 4 v CAMOU UPC  Ours
Recognition 36.6 — 27.4 49.6
Naturalness 43 .4 39.6 40.6 60.4

Classification  Classification Detection Detection

Wang, Jiakai, et al. "Dual Attention Suppression attack: Generate Adversarial Camouflage in Physical World." CVPR,2021.



Surveillance system: vehicle detection
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Surveillance system: vehicle detection

O Physical world attack
e Surveillance system Attack

* Physical devices *% M2221-QL t//
& Hi3519AV100

2018-05

2
)

!
upgR

B Bt Bd B B Bd B B

Huawei Hikvision

Wang, Jiakai, et al. "Dual Attention Suppression attack: Generate Adversarial Camouflage in Physical World." CVPR,2021.




Sandbox for simulations of physical world attack
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Summary

Method Author Attack Type Year

Model Extraction Attack F. Tramer Model stealing 2016
AutoEncoder-based DeepFake Anonymous DeepFake 2017
Backdoor Injection Attack Liao, C. Backdoor Attack 2018
Transfer Learning Shafahi, A. Data poisoning 2018
FaceSwap-GAN Anonymous DeepFake 2018
BadNet Gu, T. Backdoor Attack 2019
Backdoor in CNNs Barni, M. Backdoor Attack 2019
c-BaN Salem, A. Backdoor Attack 2020

Meta Poison Huang, W. R. Data poisoning 2020
Simulating Me, C. Model stealing 2020
Embedding Poisoning Yang, W. Data poisoning 2021
Dataset Inference Pratyush M Model stealing 2021




Backdoor attack

[0 What is Backdoor Attack

A backdoored model contains a hidden pattern trained into the model
Attacking way: access and poison the training data with a pre-defined trigger
The backdoored model exhibits high accuracy on the test set

The model misclassifies the input with the pre-defined trigger present

—_— Label 7
Modified Samples Poisoned . Target
Target Label: 7 Label 7 Inputs Labels
Trigger: Traln
Clean Correct
Backdoored Model Inputs Labels
Label 9

Meodified Training Set
Backdoor Training Inference

(a) (b) (c)




Backdoor attack: BadNet

O The Early Backdoor Attack Study
* Inference-time attacks fool a trained model into misclassifying an input via
imperceptible, adversarially chosen perturbations.

e Atraining-time attacks
* The patterns are arbitrary in shape, e.g. square, flower or bomb
* Model performs well on its intended task (including good accuracy on a held-out

validation set)

Randomly Add tngger
Select
Change
the label
|
Clean Training Dataset Poisoned Dataset

The process of poisoning dataset

Gu, T., et al. “BadNets: Evaluating Backdooring Attacks on Deep Neural Networks.” IEEE Access (2019) (arXiv:1708.06733 2017).



Backdoor attack: BadNet

no backdoor (%) backdoor on target (%)
0 0.65 0 0.08
1 11 . 0.07
Average Error for Backdoored Images is much Yl 060 2] 0.06
higher than the average error for clean images! %: 0.55 %;ﬁ ood
E & E’ 61 0.03
; 0.50 ; 0.02
| 0.01
class Baseline CNN BadNet ’ 01234567829 o4s 012346567809 0.00
clean clean backdoor Target Labels Target Labels
0 0.10 0.10 0.31] ::I:Jnﬁn:uul:’:ﬂwkfmr 722‘:’..'2{;:5! .‘:f’.‘.‘n“ﬁ."é‘t"h'.’.“:‘a.'&'-‘: ;'h:u‘::d on clean (left) and backdoored
s
é Eéﬁ {[:Eg :i-:: Filters with singlePixel Backdoor Filters with Pattern Backdoor
3 0.50 040 050 . . . . - ‘ ! ‘ I o
4 0.20 040 0.6 Lo -EI . .
5 0.45 050 067 . .lzl- - 00
6 0.84 073 073 - . . . o . ‘ ! g 0.2
T (.58 .39 0.29 _10 —0.4
8 0.72 072 06l . . . - e - . - . iy
9 [.19 0,99 0,99
average % 0.50 0.48 0.56 flers dedicated 1o detecting the backdoor arh highlightede T ! (10 and patiern (right) Badhets. The

Low Classification error rate indicates the
success of the backdoor attack

Gu, T., et al. "BadNets: Evaluating Backdooring Attacks on Deep Neural Networks." IEEE Access (2019).



Backdoor attack: Backdoor Injection Attack

[0 Backdoor Injection attack
* Inject a backdoor into a deep learning
model Backdoor images using Patterned Static Perturbation Mask

e Stealthy manner, without undermining - H
the efficacy of the victim model ﬂ . ' ‘

* High attack success rate

Generating Perturbation Injection Before Training set
Mask I!ﬂ Backdoor Model Training
HIEH
UM [ Incoming Data Hl
I =] update Existing
Injection Set .hll — Model )
“rur-_n,r nown Da Model Updating

Liao, C., et al. “Backdoor Embedding in Convolutional Neural Network Models via Invisible Perturbation.” ACM CODASPY (2018).



Data poisoning: Transfer Learning

] Data poisoning
* Add examples to the training set to manipulate the behavior of the model
at test time.
* Do not require any control over the labeling of training data

- 2 2
. = argmin x)— f(t 1+ Blx—=b
* Simply a gradient descent update to minimize the L2 distance

* Proximal update that minimizes the Frobenius distance
* Coefficient B make the poison instance look realistic

Algorithm 1 Poisoning Example Generation

Input: target instance ¢, base instance b, learning rate A
Initialize x: zg < b
Define: Ly, () = | f(x) — f(t)[|
for : = 1 to maxIters do
Forward step: z; = x;_1 — AV, L,(x;_1)
Backward step: x; = (z; + A\8b) /(1 + BA)
end for

Shafahi, A., et al. “Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks.” NIPS (2018).



Data poisoning: Transfer Learning

Poisoned target: transfer learning, a pre-trained feature extraction network
is used, and only the final network (softmax) layer is trained to adapt to a specific task

Sample target and poison instances Incorrect class’s probability

Results of 1099 experiments

L4 &

Target instances from Fish class

clean poisoned

count (a.u.)

model model
Poison
instances
made for y i
fish class a !
from dog 0.000 0.001 0.9 0.98 1.00
i:asst:nces misclassification confidence

Success rates of experiments

Target instances from Dog class ] .
-1 success rates of various experiments

—— bird-vs-dog | opacity 30%
9 1.001 airplane-vs-frog | opacity 30%
® 0.75 { —— airplane-vs-frog | opacit o
[9))
(0]
o} i
Poisons bt 0.50
made for 7 0.25 4
dog class ' /_N
from fish 0.00 L+ : . .
bases 0 20 40 60

# poisons

Shafahi, A., et al. “Poison Frogs! Targeted Clean-Label Poisoning Attacks on Neural Networks.” NIPS (2018).



Data poisoning: Meta Poison

O Problem o
o Meta Poison in weight space
* Rely on hand-crafted heuristics
* Solve poisoning problem directly via bi- oo g g
level optimization is intractable (weights .--/\\ \H! \\\ v P
? gi’ 0 0 .._/’\;
and examp|ES) : L -_l '-l 9/ wnhpmsondata\\

K . '
(K ®
\} i \)

3 3
Low Lig ' Low Lygy

X, = arg rr)l(;n Laav (xt, Yadv, 9*(Xp))
0*(Xp) = arg mein Ltmin(XC UX,Y; 9)

Strategy for crafting effective poisoning examples

[0 Meta Poison

. ::;:Z;cl-(;rrcli:::thod approximate the bi- 0, = 0y — aVgLerain(Xe U X, Y; 8o)
0, = 0; — aVgLsrgin(X, U X,,Y; 0
e Effective, Robust and General-purpose Xi2+1 —1X" VtmLm( C( P 91)
. . p T 4p ﬁ Xp™train Xt) Yadvi 2)
* Achieve arbitrary adversary goals
 Work in the real-world : : B Nepoc
(*)Xllj-l-l - leg - Nepoch VXP Zj:g ' LadleJ-

Huang, W. R., et al. “MetaPoison: Practical General-purpose Clean-label Data Poisoning.” NIPS (2020).



Data poisoning: Meta Poison

Clean Images Clean Images Poisons Poisons

Examples of poisoned training data Success rate
g3 89 S5

a8

- i i I I I -
0.01 0.05 0.2 16 32 64 2

Baseline Learn Rate Batch 5|ze Data Aug. Weight Dec.

"‘{' Target:
: True Class: Bird
. Poisoned : Dog
.

Architecture transferability

=
o
7]
=
=
C
[=]
)
=
. Z o i
Google Cloud AutoML Vision Models 23 3
= @
L
Google Cloud Platform Google Cloud Platform E" E ';"1
" =g -]
u:::isaned X ::s:‘ned B E o
L)
Test your model Test your model
=Xz [ imotosuess | ™ - 0.4
U 10 10 images can be upioaded at 8 e U 1010 Frages can bw splomsed ot @ S =4 '
g - 56% 26% 49%
Predictions Predictions =
1 object 1 object B El.3
TR e e ConvNetBN  ResNet20 VGG13
victim network

Huang, W. R., et al. “MetaPoison: Practical General-purpose Clean-label Data Poisoning.” NIPS (2020).



Model stealing: Model Extraction Attack

0 What is Model Extraction Attack EgE O s
" ” . . -g % = g % Eﬁl E E E :E 8
Steal” the model with black-box access, without _— S 3 55 225 33 BE
knowledge of model’s parameters or training data s WL Sl S A S
. . . BigML [11] v / v v X X v
* Accept partial feature vectors as inputs and include PredictionlO [44] v X X £ S Ko
. . _ Google [25] X Vv v v v v v
confidence values with predictions
* Duplicate the functionality ML service
Data owner Extraction
adversary

O Attack Different Models (Y

e Extract target ML models with near-perfect fidelity for
popular model classes
e Logistic regression, neural networks, and decision trees, etc.

Algorithm
* Assumes a leaf-identity oracle returns unique
identifiers for each leaf
* Gettheleafid
» Search for all satisfied x
* Create new queries for unvisited leaves
* Analyze the correctness and complexity

€ {Y,0}

< 40

F Trameér, et al. "Stealing Machine Learning Models via Prediction APIs." 25th USENIX Security Symposium, USENIX Security 16, August 10-12, 2016



Model stealing: Model Extraction Attack

Results of model extraction attacks on ML services

Service Model Type Data set Queries Time (s)
Amazon Log@st?e Regression Digits 650 | 70
Logistic Regression  Adult 1.485 149
BigML Decision Tree German Credit 1,150 631
Decision Tree Steak Survey 4,013 2,088
Average error of extracted RBF kernel SVM Average error of extracted softmax models
Ricy Rounit Ries Runi

g 100 g 10"

LE == Uniform ‘E | =~ Uniform

g 10-! k =9 Line-Search 1 € 107" ¢ -4 Lm::-!*‘slt:urch E|S 8

§ ) Adaptive g 10-2 b - Adaptive § :

5 = 3

m 1077 @ 103 | . 1k B

20 B o e, -

< 10°? oMb Z 10 ' Ll L ' I
0 25 50 95 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Budget Factor o Budget Factor o Budget Factor o Budget Factor o

F Trameér, et al. "Stealing Machine Learning Models via Prediction APIs." 25th USENIX Security Symposium, USENIX Security 16, August 10-12, 2016



Model stealing: Simulating

] Problem

* Current model stealing training The procedure of Simulator Attack
requires querying the target model.
w x0+6-ql=m

o ° . . outputof x, + 8- q1
D SlmUIatlng benignimagexﬁﬂm Olﬂplﬂgffxﬁg-tﬂ
. . . . update X+ 6 ] Black Box Model outputof x, +5-4q1
* Mimic the functionality of any m_"—“ﬁ ad A RR008 captl 5+
X1 +8-q2 X; .
unknown target model aoviager, (A ] Loutputof 1, +4- g2
update sse X458 ql
* Use a mean square error-based e —
knowledge distillation loss avimany, S5 gl
 Compute and accumulate loss fine-tune fine-tune
from multiple tasks . updete e Simulator
* Reduce query complexity fine-tune for T iterations
subsequent queries - Simulator
O Algorithm Sy BN NNy
max y; — J; if untargeted advimage;ﬂ"“‘*"' a— ——{outputof 642

~ N _ JU#t} . .
L@, t) = 9, — : ft)i 9, if targeted Fine-tuned Simulator
J

Ma, C., et al. “Simulating Unknown Target Models for Query-Efficient Black-box Attacks.” CVPR (2021).



Model stealing: Model Extraction Attack

Results in CIFAR-10 and CIFAR-100 Results under lee norm in Tiny-ImageNet

Attack Success Rate

Dataset |\nrm| Attack Avg. Query

2 Median Query
PyramidNet-272 GDAS WRN-28 WRN-40

PyramidNet-272 GDAS WRN-28 WRN-40

PyramidNet-272 GDAS WRN-28 WRN-40
NS | s e wm ms| W m 1 5| ™ m w m Attack Attack Success Rate | Avg. Query Median Query
RGF[ ] 100% 100% 100% 100% 216 168 153 150 204 152 102 152
RGF e 3 % 1 7 2 2 -
wegR | M o=l 2 &L L] S &S S Dizi Rs2  Ras [Dizi Rs2 Ras |Dizi Rs2 Ras
Bandits [ ] 100% 100% 100% 100% 151 66 107 98 110 54 80 78
CIFAR-10 Simulator Attack 100% 100% 100% 100% 92 M £ty 51 2 26 M M A .
NES [19] 86.8% T4% T42%  775% 1559 628 1235 1209 600 300 400 400 NhSl ‘I 74;‘4 45}‘& 455% l.ux, 2“” 2078 5“) 765 8]6
RGF|[ ) 99% 938% 98.6% 98 8% 95§ 646 1178 928 668 460 663 612
.RGF 3% 979% 97.7% % 2 37 703 L 2% 23 2 3 i v '
be inmtiti| ok Wk Gk | e dmr ame ser| ol e ek, s RGF | ] 06.4% 853% 87.4% 1146 2088 2087| 667 1280 1305
Bandits [ 0] 99.6% 100%  99.4% 9.9% 1015 391 611 542 560 166 24 28 Wat S{)é ;9[4 i()(“ 88" 1581 ls l .“8 657 6”
Simulator Attack 96.5% Po% 98.1% 98 8% ™m 248 466 419 469 83 186 186 . - l '
NES (1] 92.4% 902% 98A%  99.6% 18 94 102 105 100 50 100 100 P R('l 94' 8' "y 8' bl s 3 v’ x
| Prorr ix aor o | 1w % 4 m a ® @& & o Meta Attack [ 2] 71.1% 33.8% 36% (3789 4101 4012|3202 3712 3649
* | Meta Atack [1 7] W7"-' w.:«’a 99.4% muly& 1022 930 193 1252 7x‘¥ 73‘1 91‘: 913 % \ ’
el el B B M|l 2 2% B g & o = Banduts [20] 199.2% 94.1% 953% | 964 1737 1662| 520 954 1014
RF (32 Gre see o mem|l B oo e | 3y ag  am Simulator Attack [994% 96.8% 97.9% [ 811 1380 1445( 431 850 8§78
¢ P-RGF [] 99.3% 98.2% 98% 978% 308 220 mn 480 147 116 136 181
” Meta Attack [ 1 7] 99.7% 9.8% 97.4% 973% 1o 1098 1294 1369 912 91 1042 1040
Bandits [ ] 100% 100% 99.8% 9 8% 266 209 262 260 68 57 107 92
Simulator Attack 100% 100% 99.9% 9.9% 129 124 196 2 M 28 58 54

Comparison of the Attack Success Rate

= e 1000 = Bandits 1000 Bandits /
= _ 20 - P.RGF ——— PRGF
2 X 8 RGF - RGF
2 270 800" el Metn Attack 800 = Mata Attack
o T g & NES [ NES
2 2 o 3 e Simuator Attack 3 600 wae Semustor Attack
§ —— Bandits § —— Bandits e &
7} —— P-RGF » 9 —— P-RGF 3 2
§ RGF ‘g 30 /f — RGE—T" | -— -
=z Meta Attack z ‘ Lz ~—— Meta Attack oy
* NES = =i NES 200 200 P
—— Simulator Attack 10 I,,,,// ——  Simulator Attack AR e S
% 1K 2K 3K 4K 5K 6K 7K 8K 9K 10K G IK 2k 3K 4K 5K 6K 7K 8K OK 10K " 2
Maximum Query Number Threshold Maximum Query Number Threshold %10 20 30 40 50 60 70 s 60 100 W 10 20 0 4 5 60 70 80 80 100
Attack Success Rate (%) Attack Success Rate (%)

Ma, C., et al. “Simulating Unknown Target Models for Query-Efficient Black-box Attacks.” CVPR (2021).



DeepFake

Replace the face De-age the face

Replace the head

Petrov, Ivan, et al. "Deepfacelab: A simple, flexible and extensible face swapping framework." arXiv preprint arXiv:2005.05535 (2020).



DeepFake: Deepfacelab

1 Extraction
* Face Detection
* Face Alignment
* Face Segmentation
O Training
* AutoEncoder-based
DeepFake
* GAN-based DeepFake
[ Conversion
* Target Face Generation
* Blending
Sharpening
.

Petrov, Ivan, et al. "Deepfacelab: A simple, flexible and extensible face swapping framework.

Extraction

Training

Predicted
Src Pair

Src Pair

RETREN|
g

-

<]
_“ §. % “
: g
§° :
2
Dst Pair Predicted
Dst Pair
L ]
Conversion

Input Pair

-1

" arXiv preprint arXiv:2005.05535 (2020).

Aligned Mask
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Real or Fake ?
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DeepFake: AutoEncoder, Faceswap

CJAutoEncoder-based DeepFake
 Two encoder-decoder pairs are used to train on

source and target face images.
* Encoders share parameters to find and learn the

similarity between two faces.
* Source features are connected with target decoder

to swap face.

Structure of autoencoder-based DeepFake

Original Fheoter — Decoder A Reconstructed
Face A - Face A Face A
' .. ’ —~ —_— f"ﬁ; ' ‘

<%

Original gl C Reconstructed
Face B Encoder Face B Decoder B Face B
e . A — ‘_. &
Original — Latent Reconstructed
Face A Encoder Face A Decoder B Face B from A

https://github.com/deepfakes/faceswap
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Defend against Adversaries: Overview

Adversarial defense mainly uses active or passive methods to eliminate the
impact of adversarial examples on the model.

Model Digital World
robustness

enhancement

Defend
Against
Adversaries

Data-end

Passi Example
assive malicious

Physical World identification




DeepFake Detection

0 Observation
* most existing face manipulation methods
share a common step:
* blending the altered face into an existing
background image.

[ Face X-ray
* Do not rely on knowledge of artifacts
* (Can be trained without fake images
* Remain effective for unseen face

Iy - blended face

I - foreground face

Deformation
& Blur

M. final mask

Landmarks of I Initial mask

B: face X-ray

Li, Lingzhi, et al. "Face x-ray for more general face forgery detection." ICCV. 2020.



DeepFake Detection

Visual results on various facial manipulation methods

Input Groundtruth Prediction Input Groundtruth Prediction Input Groundtruth Prediction

Benchmark results in terms of AUC, AP and EER

.. Test dataset
Model Training dataset DED DEDC Celeb.DE
AUC AP EER | AUC AP EER | AUC AP EER
Xception [ 0] FF++ 8786 7T78.82 2149 | 4898 50.83 5045 | 36.19 5007 59.64
Face X-ray BI 0347 8789 1272 | 7115 7352 3262 | 7476 6899 3l.16
Face X-ray FF++and BI | 9540 9334 837 [ 8092 7265 2754 | 80.38 7333 2670

Li, Lingzhi, et al. "Face x-ray for more general face forgery detection." ICCV. 2020.



Image Compression

[d0ComDefend

End-to-end image compression model to defend adversarial examples

well-trianed

@ (A Image [f\ Label:dog
- classification d > (wrong)

S | model Lo

—

] .versarial
image
v ! 2
| _ well-trianed E L(el, 92) == WE”RBC(02, Com(GI y m) + 99) - 'rI;”
. {10 b g & asls'i';,ﬁeﬁm oh, Label:Panda
| | ! g model (Correct) E —|—/\||Com(91, :L') ||2.
. ComCNN '

12 bits map
a compression ==
. —
convolutional neural
network (ComCNN)
+

Yo P o | Gaussian noise
a reconstruction

convolutional neural
network (RecCNN).

' Input Conv ' Conv+Elu ' Down-Conv+Elu ' Up-Conv+Elu “[1 Output Conv

X Jia,et al. ComDefend: An Efficient Image Compression Model to Defend AdversarialExamples. CVPR, 2019.



Image Compression

Table 8. Comparison results with HGD on ImageNet (L = 8/16)

The classification accuracy of ResNet-50 on adversarial

Network Defense Clean FGSM  IFGSM(3/5) | MI-FGSM | Deepfool C&W
Nomal | 86% | S4%530% 10%/5% | 13%T% | 13%11% | 0%/0% images produced by four attacks using the proposed
IncResV2 HGD 54% | 47%/48%  42%/42% 46%/44% | 48%/48% | 48%/48% g p y g p p
Our method | 77% | 62%/61% 51%/42% | 50%/40% | 60%/60% | 61%/63% method at the test time and at training and test time. The
Normal 83% | 20%/18%  57%/49% 57%/50% | 12%/11% 0%10% .
Incv3 [ HGD | 70% | G0G60% 620l61% | 62%I62% | 60%Ie0% | S0%0% dotted line represents the accuracy of the ResNet-50
Our method | 74% | 62%/61% 64%/60% 69%/64% | 60%/60% | 60%/60% | . | . . h f
Nomal | 88% | 28%7356% G% % | 5% | 0%0% model on adversarial images without any defense.
IncV4 HGD 64% | 56%/56% 51%/50% 57%/52% | 59%/59% | 59%/59% — BIM
Our method | 74% | 58%/56% 50%/46% 50%/40% | 60%/60% | 61%/60% 100| ] 100
L I =&l Without defence
kel 1 == i i
80 igﬁi i: ]tfasntn:;n;id test time
~. 80 _ \
S ; £
S nop -8-Detemcs o tine Zert
Table 5. THE RESULT OF COMPARISONS WITH OTHER DEFENSIVE METHODS(CIFAR-10 , L, = 2/8/16) £ 60 \ Dafence in traing and test time | - & .
Network Defensive method Clean FGSM BIM DeepFool C&wW § h -~ g 40 \
Normal 00%/92%/92% | 39%I20%/18% | 08%00%/00% | 21%/01%/01% | 17%00%/00% 50 - g \
Adversarial FGSM | 91%/91%/91% | 88%P1%01% | 24%N07%M00% | 45%00%/00% | 20%/00%/071% =~ B —p. 20
In training time | Adversarial BIM | 87%/87%/81% | S0%I52%/34% | 14%/32%06% | 19%/A8%/25% | 16%MA2%08% | 40 U5 _ E
Resnets0 ;,:;bel it&mod:;:‘:i ;zzggiggﬁﬁu T3%154%128% | S9%/08%M01% | 56%/20%/10% | 30%/02%N2% | 2 | | | 0 ~
Fea;“r: qu;zing 84%/84%/84% | 319/20%/18% mmm o 0.02 0.04 0.06 0.08 0 0.02 0.04 0.08 0.08
In test time PiexIDefend B5%/85%/58% | 13%/40%/24% | T1%/46%/25% | B0%/80%/80% | T8%f18%/18% | L -values L -values
Proposed method | 91%/91%/91% | 86%/84%/83% | 78%M1%34% | 88%/88%/88% | 89587 %l81% | DeepFool ow
100
! I 100 r . |
N O— i —— o o — 'E” W:"e‘:.“! !c::f?m| P &
80 =E] Without defence B0 Defence in traing and test time
\ efence in test time
Table 6. THE RESULT OF CQMPARISONS WITH OTHER DEFENSIVE METHODS(Fashion-mnist , L+, = 8/25) = ol 1 GEB:WE in:m;‘g and test fime s o
Network le;::}‘f;;e Clean FGSM BIM DeepFool | C&W g \ g
Normal 93%/93% 38%/24% 00%/00% 06%/06% 00%/00% § 40 ! § 40
Adversarial FGSM | 93%/93% 85%/85% 51%/00% 63%/07% 67%/21% < \ < |
Adversarial BIM 92%/91% 84%/19% 76%/63% 82%/72% 81%/70% 20 L} 20 !"ﬂ
Resnet50 | Label Smoothing 93%/83% | 73%/45% 16%/00% | 29%/06% | 33%/14% » “ . "
Feature Squeezing | 84%/84% | 70%/28% 56%/25% 83%/83% 83%/83% 0 [ T P S S RN R | 0 i 1 T eT-8-1#
PiexIDefend 89%/89% 87%/82% | 85%/83% | 88%/88% 88%/88% 0 0.02 0.04 0.06 0.08 0 1 2 3 4 5 6
_Froposedmethod 93%/93% | 89%/89% 70%760% | 90%/89% | 88%/89% L -values L,-values 10

X Jia,et al. ComDefend: An Efficient Image Compression Model to Defend AdversarialExamples. CVPR, 2019.



Gradient Obfuscation

clean RAND FGSM BIM

[0 Observation

* Adversarial examples mainly lie in the
low probability regions of the training

. . . frog bird bird airplane
distribution
D PixelDefend Densities of Adversarial Examples
* Generative models can be used for 20 clean(train)
. . [ clean(test)
detecting adversarially perturbed o RAND
images based on the probabilities of = ioa
all training images a 1o DeepFool
. . . cw
* Further purify input images, by 05
making small changes to them in .
order to move them back towards the 0 1 2 3 4 5 6

. . ) . . Bits per dimension
training distribution

Song, Y.et.al.Pixeldefend: Leveraging generative models to understand and defend against adversarial examples. arXiv preprint arXiv:1710.10766, 2017.



Gradient Obfuscation

The distribution of p-values under the PixelCNN generative model
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Pixel Defend results on CIFAR-10
TRAINING DEEP STRONGEST
NETWORK TECHNIQUE CLEAN RAND  FGSM BIM FOOL cwW ATTACK
ResNet Normal 92/92/92 92/87/76 33/15/11  10/00/00  12/06/06  07/00/00 | 07/00/00
VGG Normal 80/80/80 89/88/80 G60/46/30 44/02/00 57/25/11  37/00/00 | 37/00/00
Adversarial FGSM | 91/91/91 90/88/81 88/91/91 24/07/00 45/00/00  20/00/07 |  20/00/00
Adversarial BIM 87/87/8T 87/8T/86 80/52/34  74/32/06  70/48/25  76/42/08 | 74/32/06
e Label Smoothing 02/92/92 01/88/77 73/54/28 59/08/01  56/20/10 30/02/02 | 30/02/01
esNet Feature Squeezing 84/B1/84 83/82/76 31/20/18 13/00/00 75/75/75 78/78/78 | 13/00/00
Adversarial FGSM e on -
+F:;frtnsqummg 86/86/86  85/84/81  73/67/55 55/02/00 85/85/85  $3/83/83 |  55/02/00
ResNet Normal + PixelDefend | 85/85/88 82/83/84 73/46/24  71/46/25 80/80/80  78/78/78 T1/46/24
VGG Normal + PivelDefend | 82/82/82 82/82/84 80/62/52 80/61/48 81/76/76  81/79/70 | 80/61/48
Adversarial FGSM . - o . .
- + PreelDefend 88/88/86 86/86/87 81/68/67 81/69/56 85/85/85 84/84/84 | 81/69/56
Adversarial FGSM
+Adavp::::r;ix¢mdmd 90/90/90  86/87/87 81/70/67 81/70/56 82/81/82 81/80/81 | 81/70/56

I.Pixeldefend: Leveraging generative models to understand and defend against adversarial examples. arXiv preprint arX




Gradient Obfuscation

[ Obfuscated gradients
a phenomenon exhibited by certain defenses that makes standard gradient-based
methods fail to generate adversarial examples.

Defense Dataset Distance Accuracy
Buckman et al. (2018) CIFAR 0.031 (£ 0% *
Ma et al. (2018) CIFAR 0.031 () 5%
Guo et al. (2018) ImageNet  0.005 (£2) 0%+
Dhillon et al. (2018) CIFAR 0.031 () 0%
Xie et al. (2018) ImageNet 0.031 (£) 0%+
Song et al. (2018) CIFAR 0.031 (F) 9%
Samangouei et al. MNIST 0.005 (£2) 55 Yo% *
(2018)

Madry et al. (2018) CIFAR 0.031 (o) 47%
Naetal. (2018) CIFAR 0.015 (f==) 15%

Defense technigues cause obfuscated gradients and are vulnerable to their attacks.

They believe adversarial training approach does not cause obfuscated gradients.

Athalye A, Carlini N, Wagner D. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. ICML. 2018.



Adversarial Training

0 An Optimization View on Adversarial Robustness

.1
Adversarial Training: ~ min| = > max L(f(x+5),y)
0 D (xy)eD oeA(x)
saddle point problem
The composition of an inner maximization

problem and an outer minimization problem

Universallv Robust Networks

capacity is crucial for robustness, as well as for the ability to
successfully train against strong adversaries

Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning models resistant to adversarial attacks,” in International Conference on Learning Representations, 2018.




Adversarial Training

(1
Adversarial Training: ~ min| — Y, max L(f(x+6),y)

D (x.7)eD oeA(X)

(a) Loss of model v3,4,. (b) Zoom in for small €4, €.

Gradient masking in single-step adversarial training

O Ensemble Adversarial Training: augments training data with perturbations
transferred from other models  Domain Adaptation with multiple sources

Theorem 1 (informal). Let h™ € H be a model learned with Ensemble Adversarial Training and
static black-box adversaries Ay, ..., A,. Then, if h* is robust against the black-box adversaries
A, ... Ay used at training time, then h™ has bounded error on attacks from a future black-box
adversary A, if A is not “much stronger”, on average, than the static adversaries Ay, ..., A;.

F. Tramér, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel, “Ensemble adversarial training: Attacks and defenses,” in International Conference on Learning Representations, 2018.




Adversarial Detection

[0 Adversary detection network: augment by subnetworks
* branch off the main network at some layer
e output the probability of the input being adversarial

binary detector network, inputs intermediate feature representations, and
discriminates between samples from the original data set and adversarial examples

the worst case: a dynamic adversary adapting to the detector

z:?)d" =z :cfld_‘ﬁl = Clip;, {a:f.,,d" + o [(1 — 0) 5g0(V 3T ets (22, Yirue (7)) + 0 580 (Vg Jger (22, 1))] }

*D *DH *H

3 16 16 32 64 64 10
Input Conv Res Res Res GAP—»{Denst—»
532><32 §32><32 832><32 §16><16 8%8 1x1 1x1
'ap©)!  Vap(), Yap@) Yap@),  Vapw),
adv. detector opt opt 1x1
““““ 96 192 192

'AD(@), ¢ |Conv—» MP —»Conv—» MP |—»{Conv—»{Conv—»|GAP—»

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017a.



Adversarial Detection

a—, 1.0 3 LX) °

= % ® Fast re . .

£ 09 . v ’ ¢ lterative () detectability of different adversaries
8 0.8 . 5 v lterative ({)

- 0.7 A DeepFool ({3)

5 0.6 ) EsepF‘"’" Lo the detectability is above 80%

S 0.5 5 for all adversaries

-

<

0.4
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predictive accuracy on adv. images

0.90 . - T r T T T T
085F ¢ A
0.80 4 A

. B ‘ =
075k *a | Detectability versus classification

0.70| A . 1 accuracy of a dynamic adversary

0.65 | .
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s L .
0.55 . a4a Dynamic Detector more robust (more than 70% )
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Predictive accuracy on adv. imaaes

Adversarial detectability

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017a.



Denoising and Restructure

[0 Key Observations of image features
e clean image: appear to focus
primarily on semantically
informative content =
* adversarial image: activated across 1 Sl
semantically irrelevant regions as
well

adversarial

HxWx256

HxWx256

1 Solutions
* New convolutional network architectures
equipped with building blocks designed to
denoise feature maps

HWx256

HWx256

256xHW

|
HxWx256
1 x
Yi = C(2) Z f(ziszj) -z, A block with non-local means as the
VieL denoising operation

Cihang Xie, Yuxin Wu, et al; Feature Denoising for Improving Adversarial Robustness. CVPR 2019, pp. 501-509



Denoising and Restructure

Adversarial images and their Defense against black-box attacks on ImageNet
feature maps before(left) and
. L. . model accuracy (%)

after(right) the denoising operation CAAD 2017 winer 001
CAAD 2017 winner, under 3 attackers 134

ours, R-152 baseline 43.1

+4 denoise: null (1x1 only) 44.1

+4 denoise: non-local, dot product 46.2

+4 denoise: non-local, Gaussian 46.4

+all denoise: non-local, Gaussian 49.5

Defense against white-box attacks on ImageNet

551 ¥ ALP, Inception-v3
—p—ours, R-101 baseline
1 —4—ours, R-152 baseline
ours, R-152 denoise
50
45.5
_4 444 43 2000-iter PGD attack
2 ,; - 428 426
) 404
€0l kg7 38 389 392
g 7.2 M N
384 359 358
a5 " "
30
27.9
YALP
25 1 1 1 1 1 Il 1
10 100 200 400 600 800 1000 1200 1400 1600 1800 2000

attack iterations

Cihang Xie, Yuxin Wu, et al; Feature Denoising for Improving Adversarial Robustness. CVPR 2019, pp. 501-509
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Data distribution and domains

[0 Adversarial Examples are not Bugs, they are Features

Adversarial examples can be directly attributed to the presence of non-robust features

Robust dataset

Training image Adversarial example Relabel as cat

towards ‘cat” K
good standard accuracy
good robust accuracy
Robust Features: dog

Robust Features: dog
Unmodified Non-Robust Features: dog Non-Robust Features: cat
test set

-

Training image good standard accuracy

bad robust accuracy good accuracy
Non-robust dataset
(a) (b)
Disentangle features into combinations of Construct a dataset which appears
robust/non-robust features mislabeled to humans

llyas, Santurkar, Tsipras, Engstrom, Tran and Madry, “Adversarial Examples are not Bugs, they are Features”, NeurlPS 2019.



Data distribution and domains

[0 Non-robust features

features that are highly predictive, yet brittle and incomprehensible to humans

l(airplane’i (‘ship1’ ‘(dog!1 “truCk” (Cfrog!’
I Std accuracy B Adv accuracy (£ =0.25)
E
Std Training Adv Training Std Tralnlng Std Tralnlng
using D using D using Dg using Dyg
Random samples from the variants of the Standard and robust accuracy on the
CIFAR-10 CIFAR-10 test set

llyas, Santurkar, Tsipras, Engstrom, Tran and Madry, “Adversarial Examples are not Bugs, they are Features”, NeurlPS 2019.



Data distribution and domains

[0 Multi-domain hypothesis

Different types of adversarial perturbations are drawn from different domains.

RelI_U RelU
BN BN  BN“ BN BN =
I = (a) the standard BN structure;
Conv Conv (b) the structure with 4 BN
L I
Xaewn X, Xe, X, Xaen Xe. Xe, X, branches
(a) standard BN (b) multiple BN branches
" 12 Clean
-
il r r || ‘| | ' » = (c) and (d): running means and
variances of multiple BN
— 5 g ‘ branches on 16 randomly
2 ‘ I I I | | " || i sampled channels
(c) running mean (d) running variance

Liu, Tang, Liu et al., “TOWARDS DEFENDING MULTIPLE ADVERSARIAL PERTURBATIONS VIA GATED BATCH NORMALIZATION”, Work in progress.



Data distribution and domains

] Gated Batch Normalization (GBN)

A building block for deep neural networks that improves robustness against

multiple perturbation types.

. 4= P, e |1 LI 1T (a) the results of adding
g" . oy || e GBN to different single
2 -dikussiiisnnnn layers.
5 Hiauuil (b) the results of adding
a 3 PESEEESSC. S GBN to top-m layers

(a) single layer (b) top-m layers

Vanilla | AVG  MAX MSD | MN  MBN | GBN(ours)

¢, attacks 0.0% | 449% 333% 437% | 39.8% 44.9% 57.7%
(- attacks 0.0% | 59.1% 56.0% 58.9% | 30.0% 20.8% 689% Model robustness on
(.. attacks 0.0% | 292% 25.1% 38.0% | 13.2% 40.1% 49.9% i
Allattacks  0.0% | 282% 249%  379% | 130% 207% | 4879  CIFAR-10 datasets
Clean accuracy 89.7% | 80.6% 77.0% 79.1% | 82.3% 79.4% 80.7%

Liu, Tang, Liu et al., “TOWARDS DEFENDING MULTIPLE ADVERSARIAL PERTURBATIONS VIA GATED BATCH NORMALIZATION”, Work in progress.



Non-linearity and linearity of DNNs

* Early attempts at explaining this phenomenon focused on nonlinearity and
overfitting

* the linearity hypothesis. wEz=w T+w' n

+.007 x
. v T+
® sign(VaJ(8,,y)) esign(VaJ (6, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

simple linear model can have
adversarial examples if its input has
sufficient dimensionality.

fast gradient sign method

Goodfellow, Shlens and Szegedy, “EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES”. ICLR, 2015.



Non-linearity and linearity of DNNs

« Challenge the linearity hypothesis by analyzing adversarial examples using
several CNN architectures for ImageNet.
« CNNs act locally linearly to changes in the image regions with objects

recognized by the CNN, and in other regions the CNN may act non-linearly.

BFGS Perturbation R ign Perturbation
AlexNet l ( 1 (
GoogLeNet e o o g
VGG - - - -

@ () © S () )

Example of different CNNs' minimum perturbations

Luo, Boix, Roig, and Zhao, “FOVEATION-BASED MECHANISMS ALLEVIATE ADVERSARIAL EXAMPLES”. ICLR, 2016.



Neuron and paths of DNNs

O Distillation Guided Routing
identify the critical data routing paths for each input sample.

Convl Conv2 Conv3

routing paths encoding

Convl Conv2 Conv3
cat 1001 0011 100
apple 0101 1001 O10

. critical node

. neghgible node

. - . ) critical data
identifying cnitical routingpaths 7777 routing paths

Overview of Distillation Guided Routing method

Wang, Su, Zhang, and Hu, “Interpret Neural Networks by Identifying Critical Data Routing Paths”. CVPR, 2018



Neuron and paths of DNNs
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« Only small fractions of critical

nodes being deactivated will

lead severe performance

degradation.

deactivated critical nodes percentage (%)

The accuracy degradation

deactivated critical nodes percentage (%)

0.8

0.7

0.6

0.5

0.4

The intra-layer routing nodes of

higher level layers have stronger

correspondence to category

semantic concepts.

KMeans Clustering

Agglomerative Clustering

—— homogeneity = 0.8 —— homogeneity e
completeness completeness )4
V-measure 4 V-measure ,:f"/

7 0.7 74
A
/4
r‘.‘l /)
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convolutional layer index

Wang, Su, Zhang, and Hu, “Interpret Neural Networks by Identifying Critical Data Routing Paths”. CVPR, 2018

convolutional layer index

Different clustering consistency evaluation




Neuron and paths of DNNs

Ol Activation Promotion and Suppression

better understand the roles of adversarial perturbations and provide visual

explanations from pixel, image and network perspectives.

adv. example

grid level
distortion

sensitivity
measure

1]
PSR

lllustration on sensitivity measure

0.0

a 0 10 20 30 40 50 60
— dp |

21 o | |

original image

40 50 60
=7 /J
0 10 20 30 40 50 60
grid index

adversarial image

Explanation of adversarial perturbations

Xu, Liu, Zhang, Lin et al., “Interpreting Adversarial Examples by Activation Promotion and Suppression”. Arxiv, 2019



Neuron and paths of DNNs

There exists a tight connection between the sensitivity of hidden

units of CNNs and their interpretability on semantic concepts.

adv. examples  F(xo.t0) & PSRs F(z'.t) & PSRs

So
. -o-- N=10 ---- N=50 o color 273
10 N=20 a-- N=80 g 60 texture é S
o o-- N=30 -=a-- N=100 & --e-- material %g
1071 . —a] © o-- part . 3
3 . gt S 40 object
m o, '--.‘_\ . =4 .
3.10—3 n\\\‘ ' -,&}‘1 n E e-- sCcene o
. Ll p20 ¢ B
10-3 ‘ ’ £ °. )
. . - E] . - =73
L. o z e R 23
10~7 - e o E S
convZ_ 3 conv3 8 conv4 36 convd 3 conv2 3 convd B  convd 36 convs 3 -
S
(a) (b) =
Sensitivity and interpretability 3
5B
£3
-—
EE
g
o

to: catamaran — £: container ship

Interpreting adversarial perturbations

Xu, Liu, Zhang, Lin et al., “Interpreting Adversarial Examples by Activation Promotion and Suppression”. Arxiv, 2019



Neuron and paths of DNNs

CINeuron sensitivity
« Explain adversarial robustness from a new perspective of neuron sensitivity
« Measured by neuron behavior variation intensity against benign and

adversarial examples.

Benign Layer 1 Layer 2 Layer K —/  Layer K  FC Layer
ik pH 5
| @ | Bird

O
@ Cat

. | U O

_ N
N mmEe

Adversarial g' E: | B o TN Newon 3 A& FiG)  o(ED) ,
x' i Sensmvtty O
¥z (x') 2 ) a(Fz D 3 O
Top-k Sensitive 8
Ne E @

BRERE:= . e O

1A I [®] .. ® °

fz (=) fi(x) o(F;,D) j .o .

The framework of computing Neuron Sensitivity and selecting Sensitive Neuron

Zhang, Liu, Liu, and Xu, “Interpreting and Improving Adversarial Robustness of Deep Neural Networks with Neuron Sensitivity”. IEEE TIP, 2020



Neuron and paths of DNNs

Oinsightful clues for model robustness and weakness

* Sensitive Neurons Contribute Most to Model Misclassification in the Adversarial Setting
* Adversarial Attacks Exploit Sensitive Neurons Differently at Different Layers

* Sensitive Neurons Convey Strong Semantic Information

e Adversarial Training Builds Robust Models by Reducing Neuron Sensitivities

* Training Adversarially Robust Models via Sensitive Neurons Stabilizing

Truck | ©:2 Teapot [ 60 Truck [ .57 Teapo! I 054
ship I . 5 2 stick Insect [INEEEG_—. 54 ship I, 055 suck insect [N 047
Horse (I 0 &7 Refrgerator I 52 Horse NN 045 Rafrigarator NN 054
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pirpiane IR .00 Academic Gown IR ). 7 tirplane I .72 Academic Gown I O.52
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Jaccard Index Jaccard Index Levenshtein Similarity Levenshtein Similarity

The Spearman’ s Rank Correlation Coefficient and the Levenshtein Similarity

a) Neuron ) Neuron 'I

Image segmentation results of sensitive neurons

Zhang, Liu, Liu, and Xu, “Interpreting and Improving Adversarial Robustness of Deep Neural Networks with Neuron Sensitivity”. IEEE TIP, 2020



Neuron and paths of DNNs

CINeuron-wise critical attacking route

A gradient-based influence propagation strategy to get critical attacking neurons

Critical Attacking Route Discovery Leverage Critical Attacking Route
E Instance Level Model Level E : Improve Model Robustness E
| e S ¥ Model F i i E
;o ; i ) i
i |,.r I " . 1
: i _ /.' ‘, Ill || [ T—— : : 0 E
E i Instance i, [, w1 : 1 [ ] Bu-,j,l
L = ] L ! ! 0 d
o - _ B | : o| !
o e ac - L ] - ' |
g /.K 3 ﬂ\..: Aggregate i : o
' E ,{. * thatble, o P - : Weaken of |
D H ' / Top-k Critical | | ; Propagation O i
! i mstance x, [ ) / aI.rm-ckmg P ] { _ O !
(I o 'E' 1.'-. . i : - p § o :
| MoseiE O i, ; K " : Bl ™ O @ = |e[Ca:
: : '." ! s | i T ! Ry Q' - i
L -» i o TE | . i o : - ' .
| -4 ‘,i~* - I | R(D) = {0, ...} | i R..( ;
! il__.'fffg-_'-cex_-.- \."" R ™ g™ " ) - _______________________________________ | : d :

The framework of computing instance-level critical attacking
routes and model-level critical attacking route

Li, Liu, Liu, Xu and Zhang, “Understanding Adversarial Robustness via Critical Attacking Route”. Information Sciences, 2020



Neuron and paths of DNNs

O Understanding model behaviors via critical attacking routes

« Adversarial perturbations are propagated and amplified via attacking route
« Attacking route conveys strong semantic information

Astacking Normal
Nouron )

Grad-CAM of neurons on (and not on) critical attacking route of the last conv layer
using pretrained VGG16 on ImageNet

100 100

a0 S— W
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2 100 — — 101 ¢/ ikigieen experiment
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(a) Transplant experimentl  (b) Transplant experiment2

Li, Liu, Liu, Xu and Zhang, “Understanding Adversarial Robustness via Critical Attacking Route”. Information Sciences, 2020



Perceptual biases of DNNs

* ImageNet trained CNNs are strongly biased towards recognizing

textures rather than shapes
e in stark contrast to human behavioral evidence and reveals

fundamentally different classification strategies.

(a) Texture image (b) Content image (¢) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3%  grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan

Classification of a texture image, a normal image of a cat, and an
image with a texture-shape cue conflict

Geirhos et al., “IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS?, ICLR, 2019.



Perceptual biases of DNNs

[OStylized-ImageNet (a stylized version of ImageNet)

provide a much better fit for human behavioral performance
in the well-controlled psychophysical lab setting.

architecture IN—=IN IN—SIN SIN—SIN SIN—IN
ResNet-50 929 16.4 79.0 82.6
BagNet-33 (mod. ResNet-50) 86.4 4.2 48.9 53.0
BagNet-17 (mod. ResNet-50) 80.3 2.5 29.3 326
BagNet-9 (mod. ResNet-50) 70.0 1.4 10.0 10.9

Accuracy comparison
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Classification accuracy on parametrically distorted images

Geirhos et al., “IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS?, ICLR, 2019.



Perceptual biases of DNNs

* CNNs are often biased towards either texture or shape, depending
on the training dataset

Test Image Label: Fur Coat

assigning labels to cue conflict images controls
the bias of learned models.

Original Data Training Images Label Assignment & Results
Shape-! blased Model Texture-biased Model Debiased Model (ours)
C e ’
S “SEep
I g
2 ]
.t-‘; I |
>
©
I
[ X
L
©
(o]
= V'Shap X X v v v
Sha—e XTexture Shape Texture Shape - Texture
2, : b =

Lemon L &Lemon |

Models’ prediction

Poncho X Egyptnaﬁ cat X Fur Coat v/

Li, Yu, Tan et al., “SHAPE-TEXTURE DEBIASED NEURAL NETWORK TRAINING ”. ICLR, 2021



Perceptual biases of DNNs

Cliff, Drop Potpie Fur Coat
More Accurate Shape-biased Model Less Accurate
Brain Coral Expresso  Wooden Spoon Barn Triumphal Arch  Trolleybus

V

More Accurate Texture-biased Model Less Accurate

N

IMAGENET-A IMAGENET-C S-IMAGENET FGSM

Top-1 Acc. 1 mCE | Top-1 Acc. 1 Top-1 Acc.
ResNet-50 2.0 75.0 7.4 17:1
+ Debiased 3.5 (+1.5) 67.5 (-7.5) 17.4 (+10.0) 27.4 (+10.3)
ResNet-101 5.6 69.8 9.9 231
+ Debiased 9.1 (+3.5) 62.2 (-7.6) 22.0 (+12.1) 34.4 (+11.3)
ResNet-152 7.4 67.2 113 252
+ Debiased 12.6 (+5.2) 58.9 (-8.3) 22.4 (+11.1) 390.6 (+14.49)

Li, Yu, Tan et al., “SHAPE-TEXTURE DEBIASED NEURAL NETWORK TRAINING ”. ICLR, 2021

The shape-biased model
and the texture-biased
model are good/bad at

classifying different object
categories

The model robustness
on ImageNet
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Model Robustness Understanding

Trustworthy Al needs deep understanding to DNNs(Interpretability Theory)
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Model Robustness Understanding

Interpretability theory can help to make sure the safety of
real-world Al applications

« Monitor the status of Al applications « When
« Analyze Al application bugs « Where
« Expand Al application scenarios « What
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Auto-driving Unmanned Vehicle Security




Model Robustness Evaluation

Model robustness evaluation promotes Al applications
to be more controllable, credible and reliable
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More Challenges in the Life-Cycle of Al models

Attack in Physical world Attack in Physical world
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