

Adversarial Examples for Deep Learning: Attack, Defense and Robustness

Xianglong Liu

July 2021

State Key Lab of Software Development Environment

Beihang University, China

xlliu@buaa.edu.cn

Speaker Information

Dr. Xianglong Liu is currently a full Professor with the School of Computer Science and Engineering, Beihang University. His research interests include fast visual computing (e.g., large-scale search/understanding) and trustworthy deep learning (e.g., network quantization, adversarial attack/defense, few shot learning). He authored more than 60 papers on top-tier conferences and journals. He is serving as the associated editor of Pattern Recognition, IET Image Processing, Frontiers of Computer Science, area chair of ACM MM 2019/2020/2021, etc. He is also the TPC member of the OpenI Open Source Platform for Artificial Intelligence. He received NSFC Excellent Young Scientists Fund, and was selected into the 2019 Beijing Nova Program and 2015 China Computer Federation (CCF) Young Talents Development Program. He also received a number of awards including PCM 2018 best student paper, IEEE ICME 2011 best paper candidate, IEEE CVPR 2014/2016 Young Researcher Award, the 2015 CCF Outstanding Doctoral Dissertation Award, etc.

Outline

The Success of Deep Learning

Deep learning has show the great success in the fields of computer vision, natural language processing, speech recognition, etc.

Artificial Intelligence

With the great development of **deep learning** technology the application of artificial intelligence extends its vitality

Challenges

Severe threats to life and property

June 1 2020 Taiwan, China

Challenges

More safety & security sensitive tasks

More Challenging Scenarios

A new type of attack: adversarial examples and related problems

- Adversarial examples are elaborately designed perturbations to attack machine learning models:
 - Imperceptible to human;
 - Misleading to DNNs;

D Definition: $f(x) \neq f(x+r) \text{ s.t. } ||r|| \leq S_{max}$ where x is a input image, r is the noise, and f is the model.

Clean Example Human:Panda DNN:Panda

Noise Adversarial Example Human: Panda DNN: Gibbon

Clean Example Human: Banana DNN: Banana

Adversarial Example Human: Banana DNN: Toaster

Adversarial Examples

Physical World

Trend in the World

Al-Ready DoD by 2025

THE NATIONAL SECURITY COMMISSION

ON ARTIFICIAL INTELLIGENCE

Ways for DoD to Operationalize AI

An Al-ready DoD will enable the application and integration of AI-enabled technologies into every facet How AI is Transforming the Threat Landscape

Current Threats Advanced BY AI Systems

AI transforms existing range and reach of threats

- Self-replicating Al-generated malware
- Improved and autonomous disinformation campaigns
- Al-engineered and targeted pathogens

New Threats FROM AI Systems

AI creates new threat phenomena

- Deepfakes and computational propaganda
- Micro-targeting: AI-fused data for targeting or blackmail
- AI swarms and nano-swarms

Threats TO AI Stacks Themselves

Al itself is also a new attack surface

- AI attack involves the whole "AI stack".
 Examples include:
 - Model inversion
 - Training data manipulation
 - "Data lake" poisoning

Trend in the World

U.S.A

THE NATIONAL ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT STRATEGIC PLAN: 2019 UPDATE

> A Report by the SELECT COMMITTEE ON ARTIFICIAL INTELLIGENCE of the NATIONAL SCIENCE & TECHNOLOGY COUNCIL

> > JUNE 2019

Ensure the safety and reliability of artificial intelligence systems

Framework of Trustworthy AI

Confusion for selfdriving vehicles

Incorrect object recognition ?

(Evtimov et al., UC Berkeley,

Invisibility ?

(Metzen BOSCH '17)

Guaranteeing AI Robustness against Deception (GARD), 2019

Trend in China

National Strategy:

stressing the importance of secure, controllable, and reliable AI

U.S.II.SII.

国务院印发《新一代人工智能发展规划 国务院近日印发《新一代人工智能发展规划》 明确了我国新一代人工智能发展的战略目标: 到2020年 🗸 ▶ 人工智能总体技术和应用与世界先进水平同步 ▶ 人工智能产业成为新的重要经济增长点 ▶ 人工智能技术应用成为改善民生的新途径 到2025年 📝 ▶ 人工智能基础理论实现重大突破 ▶ 部分技术与应用达到世界领先水平 ▶人工智能成为我国产业升级 和经济转型的主要动力 ▶智能社会建设取得积极进展 到2030年 🗸 ▶人工智能理论、技术 与应用总体达到世界 领先水平,成为世界 主要人工智能创新中心

Standards

ISO/IEC JTC 1

ISO/IEC JTC 1/SC 27

Information security, cybersecurity and privacy protection

REFERENCE +	TITLE				
ISO/IEC JTC 1/SC 27/AG 1 3	Management Advisory Group				
ISO/IEC JTC 1/SC 27/AG 2 3	Trustworthiness				
ISO/IEC JTC 1/SC 27/AG 3 3	Concepts and Terminology				
ISO/IEC JTC 1/SC 27/AG 4 3	Data security				
ISO/IEC JTC 1/SC 27/AG 5 9	Strategy				
ISO/IEC JTC 1/SC 27/AG 6 3	Operations				
ISO/IEC JTC 1/SC 27/AG 7 😉	Communication and Outreach (AG-CO)				
ISO/IEC JTC 1/SC 27/CAG 6	Chair's Advisory Group				
ISO/IEC JTC 1/SC 27/WG 1 3	Information security management systems				
ISO/IEC JTC 1/SC 27/WG 2 3	Cryptography and security mechanisms				
ISO/IEC JTC 1/SC 27/WG 3 3	Security evaluation, testing and specification				
	Security controls and condeas 47 33				
PUBLISHED ISO STANDARDS ISO SIANDARDS UNDER DEVELOPMENT under the direct responsibility under the direct responsibility	PARTICIPATING OBSERVING MEMBER MEMBERS				

ISO/IEC JTC 1/SC 42 Artificial intelligence

1
e and roadmap
C JTC1/SC 42 - ISO/IEC JTC1/S
DBSERVING MEMBERS

Systems

https://openi.org.cn/AlSafety/

DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars

JNIVERSITY VIRGINIA

docs passing code style black JOSS 10.21105/joss.02607 pypi package 3.3.1

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX

Foolbox is a **Python library** that lets you easily run adversarial attacks against machine learning models like deep neural networks. It is built on top of EagerPy and works natively with models in **PyTorch**, **TensorFlow**, and JAX.

build unknown docs passing version 1.6.1 🐨 Igtm alerts 2 🎧 codecov unknow code style black License MIT python 3.6 | 3.7 | 3.8 chat on slack

Outline

Adversarial Examples in Digital World

Christian Szegedy

Adversarial examples generated for AlexNet

Adversarial examples are somewhat universal and not just the results of overfitting to a particular model or to the specific selection of the training set

$$y^x \neq F_{\theta}(x+r)$$
 s.t. $r < \epsilon$

Nature 2019.10

"any AI that uses DNNs to classify inputs — such as speech — can be fooled"

Attacks in the Digital World: the Overview

Summary

Method	Author	Attack Type	Year
FGSM attack	Goodfellow I. J.	Gradient-based attack	2014
C&W attack	Carlini N.	Optimization-based attack	2017
PGD attack	Madry A.	Gradient-based attack	2017
PBBA	Papernot N.	Transferability-based attack	2017
ZOO Attack	Chen P. Y.	Optimization-based attack	2017
BA	Brendel W.	Optimization-based attack	2017
EAD attack	Chen P. Y.	Optimization-based attack	2018
AdvGan	Xiao C.	Model-based attack	2018
CAR	Li T.	Interpretable-theory-based attack	2021

Gradient-based attack: FGSM attack

Fast Gradient Sign Method

$$\omega^T ilde{x} = \omega^T \left(x + \eta
ight) = \omega^T x + \omega^T \eta$$
 linear hypothesis

• The fast gradient sign method trys to craft adversarial examples by using some gradient information during forward and backward in DNNs.

$$x' = x + \epsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x, y))$$

• simple but effective adversarial attack

Gradient-based attack: FGSM attack

22

Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples[J]. arXiv preprint arXiv:1412.6572, 2014.

Gradient-based attack: FGSM attack

The influence of different epsilon values for FGSM

Weight visualizations on MNIST

D Projected Gradient Decent

$$\min_{\theta} \rho(\theta), \quad \text{where} \quad \rho(\theta) = \mathbb{E}_{(x,y)\sim\mathcal{D}} \left[\max_{\delta\in\mathcal{S}} L(\theta, x + \delta, y) \right]$$

• Generate adversarial examples **by iteratively add small perturbations** on clean images like FGSM and project it to the epsilon ball.

$$x' = x + \epsilon \operatorname{sign}(\nabla_x \mathcal{L}(\theta, x, y))$$
$$x^{t+1} = \prod_{x+S} \left(x^t + \alpha \operatorname{sgn}(\nabla_x L(\theta, x, y)) \right)$$

• The strongest attack, but time consuming.

Gradient-based attack: PGD attack

	_	-	
Method	Steps	Source	Accuracy
Natural	-	-	87.3%
FGSM	-	A	56.1%
PGD	7	A	50.0%
PGD	20	A	45.8%
CW	30	A	46.8%
FGSM	-	A'	67.0%
PGD	7	A'	64.2%
CW	30	A'	78.7%
FGSM	-	A _{nat}	85.6%
PGD	7	Anat	86.0%

CIFAR-10

MNIST

Method	Steps	Restarts	Source	Accuracy
Natural	-	-	-	98.8%
FGSM	-	-	А	95.6%
PGD	40	1	А	93.2%
PGD	100	1	А	91.8%
PGD	40	20	А	90.4%
PGD	100	20	А	89.3%
Targeted	40	1	А	92.7%
CW	40	1	А	94.0%
CW+	40	1	А	93.9%
FGSM	-	-	A'	96.8%
PGD	40	1	A'	96.0%
PGD	100	20	A'	95.7%
CW	40	1	A'	97.0%
CW+	40	1	A'	96.4%
FGSM	-	-	В	95.4%
PGD	40	1	В	96.4%
CW+	-	-	В	95.7%

D Optimization-based

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = t$ $x + \delta \in [0, 1]^n$

• The C&W attack meets both conditions by optimizing as follows:

$$\begin{split} \delta_i &= \frac{1}{2} (\tanh(w_i) + 1) - x_i. \\ \text{minimize} \quad \|\delta\|_p + c \cdot f(x + \delta) & \qquad \text{minimize} \quad \|\frac{1}{2} (\tanh(w) + 1) - x\|_2^2 + c \cdot f(\frac{1}{2} (\tanh(w) + 1)) \\ \text{such that} \quad x + \delta \in [0, 1]^n & \qquad \text{with } f \text{ defined as} \\ f(x') &= \max(\max\{Z(x')_i : i \neq t\} - Z(x')_t, -\kappa). \end{split}$$

Optimization-based attack: C&W attack

D Framework

• C&W method use optimizer to minimize the object function.

			Bes	st Case					Ave	rage Ca	se				Wor	st Case		
	Char Var	ige of iable	Cl De	ipped escent	Pi I	rojected Descent	Cha Va	inge of riable	Cl De	ipped escent	Pı E	rojected Descent	Cha Va	inge of riable	Cl De	ipped escent	Pro	jected scent
	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob
f_1	2.46	100%	2.93	100%	2.31	100%	4.35	100%	5.21	100%	4.11	100%	7.76	100%	9.48	100%	7.37	100%
f_2	4.55	80%	3.97	83%	3.49	83%	3.22	44%	8.99	63%	15.06	74%	2.93	18%	10.22	40%	18.90	53%
f_3	4.54	77%	4.07	81%	3.76	82%	3.47	44%	9.55	63%	15.84	74%	3.09	17%	11.91	41%	24.01	59%
f_4	5.01	86%	6.52	100%	7.53	100%	4.03	55%	7.49	71%	7.60	71%	3.55	24%	4.25	35%	4.10	35%
f_5	1.97	100%	2.20	100%	1.94	100%	3.58	100%	4.20	100%	3.47	100%	6.42	100%	7.86	100%	6.12	100%
f_6	1.94	100%	2.18	100%	1.95	100%	3.47	100%	4.11	100%	3.41	100%	6.03	100%	7.50	100%	5.89	100%
f_7	1.96	100%	2.21	100%	1.94	100%	3.53	100%	4.14	100%	3.43	100%	6.20	100%	7.57	100%	5.94	100%

There are many possible choices

$$\begin{split} f_1(x') &= -\mathrm{loss}_{F,t}(x') + 1\\ f_2(x') &= (\max_{i \neq t} (F(x')_i) - F(x')_t)^+\\ f_3(x') &= \mathrm{softplus}(\max_{i \neq t} (F(x')_i) - F(x')_t) - \mathrm{log}(2)\\ f_4(x') &= (0.5 - F(x')_t)^+\\ f_5(x') &= -\mathrm{log}(2F(x')_t - 2)\\ f_6(x') &= (\max_{i \neq t} (Z(x')_i) - Z(x')_t)^+\\ f_7(x') &= \mathrm{softplus}(\max_{i \neq t} (Z(x')_i) - Z(x')_t) - \mathrm{log}(2) \end{split}$$

Optimization-based attack: EAD attack

Elastic-Net Attack

• Formulated as an elastic-net regularized optimization problem.

minimize $\|\delta\|_p + c \cdot f(x+\delta)$ such that $x+\delta \in [0,1]^n$

$$egin{aligned} & \sum_{oldsymbol{x}} \ & \min_{oldsymbol{x}} c \cdot f(oldsymbol{x},t) + eta ||oldsymbol{x} - oldsymbol{x}_0||_1 + ||oldsymbol{x} - oldsymbol{x}_0||_2^2 \ & ext{s.t.} \quad oldsymbol{x} \in [0,1]^p \end{aligned}$$

Algorithm 1 Elastic-Net Attacks to DNNs (EAD) **Input:** original labeled image (\mathbf{x}_0, t_0) , target attack class t, attack transferability parameter κ , L_1 regularization parameter β , step size α_k , # of iterations I **Output:** adversarial example \mathbf{x} Initialization: $\mathbf{x}^{(0)} = \mathbf{y}^{(0)} = \mathbf{x}_0$ **for** k = 0 to I - 1 **do** $\mathbf{x}^{(k+1)} = S_{\beta}(\mathbf{y}^{(k)} - \alpha_k \nabla g(\mathbf{y}^{(k)}))$ $\mathbf{y}^{(k+1)} = \mathbf{x}^{(k+1)} + \frac{k}{k+3}(\mathbf{x}^{(k+1)} - \mathbf{x}^{(k)})$ **end for** Decision rule: determine \mathbf{x} from successful examples in $\{\mathbf{x}^{(k)}\}_{k=1}^{I}$ (EN rule or L_1 rule).

Iterative Shrinkage-Thresholding Algorithm

	MNIST				CIFAR10				ImageNet			
Attack method	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}	ASR	L_1	L_2	L_{∞}
$C\&W(L_2)$	100	22.46	1.972	0.514	100	13.62	0.392	0.044	100	232.2	0.705	0.03
$FGM-L_1$	39	53.5	4.186	0.782	48.8	51.97	1.48	0.152	1	61	0.187	0.007
$FGM-L_2$	34.6	39.15	3.284	0.747	42.8	39.5	1.157	0.136	1	2338	6.823	0.25
$FGM-L_{\infty}$	42.5	127.2	6.09	0.296	52.3	127.81	2.373	0.047	3	3655	7.102	0.014
I-FGM- L_1	100	32.94	2.606	0.591	100	17.53	0.502	0.055	77	526.4	1.609	0.054
I-FGM- L_2	100	30.32	2.41	0.561	100	17.12	0.489	0.054	100	774.1	2.358	0.086
I-FGM- L_{∞}	100	71.39	3.472	0.227	100	33.3	0.68	0.018	100	864.2	2.079	0.01
EAD (EN rule)	100	17.4	2.001	0.594	100	8.18	0.502	0.097	100	69.4 7	1.563	0.238
EAD (L_1 rule)	100	14.11	2.211	0.768	100	6.066	0.613	0.17	100	40.9	1.598	0.293

Transferability of parameter k

Different adversarial examples on MNIST

D Zeroth Order Optimization attack

• Directly estimate the gradients of the targeted DNN: zeroth order stochastic coordinate descent, with hierarchical attack and importance sampling techniques

Algorithm 2 ZOO-ADAM: Zeroth Order Stochastic Coordinate	Algorithm 3 ZOO-Newton: Zeroth Order Stochastic Coordinat				
Descent with Coordinate-wise ADAM	Descent with Coordinate-wise Newton's Method				
Require: Step size η , ADAM states $M \in \mathbb{R}^{p}, v \in \mathbb{R}^{p}, T \in \mathbb{Z}^{p}$, ADAM hyper-parameters $\beta_{1} = 0.9, \beta_{2} = 0.999, \epsilon = 10^{-8}$ 1: $M \leftarrow 0, v \leftarrow 0, T \leftarrow 0$ 2: while not converged do 3: Randomly pick a coordinate $i \in \{1, \dots, p\}$ 4: Estimate \hat{g}_{i} using (6) 5: $T_{i} \leftarrow T_{i} + 1$ 6: $M_{i} \leftarrow \beta_{1}M_{i} + (1 - \beta_{1})\hat{g}_{i}, v_{i} \leftarrow \beta_{2}v_{i} + (1 - \beta_{2})\hat{g}_{i}^{2}$ 7: $\hat{M}_{i} = M_{i}/(1 - \beta_{1}^{T_{i}}), \hat{v}_{i} = v_{i}/(1 - \beta_{2}^{T_{i}})$ 8: $\delta^{*} = -\eta \frac{\hat{M}_{i}}{\sqrt{\hat{v}_{i} + \epsilon}}$ 9: Update $\mathbf{x}_{i} \leftarrow \mathbf{x}_{i} + \delta^{*}$ 10: end while	Require: Step size η 1: while not converged do 2: Randomly pick a coordinate $i \in \{1, \dots, p\}$ 3: Estimate \hat{g}_i and \hat{h}_i using (6) and (7) 4: if $\hat{h}_i \leq 0$ then 5: $\delta^* \leftarrow -\eta \hat{g}_i$ 6: else 7: $\delta^* \leftarrow -\eta \frac{\hat{g}_i}{\hat{h}_i}$ 8: end if 9: Update $\mathbf{x}_i \leftarrow \mathbf{x}_i + \delta^*$ 10: end while				

ZOO Algorithm

• Spare the need for training substitute models and avoiding the loss in attack transferability.

Optimization-based attack: ZOO Attack

		MNIST							
		Untarg	eted	Targeted					
	Success Rate	Avg. L ₂	Avg. Time (per attack)	Success Rate	Avg. L_2	Avg. Time (per attack)			
White-box (C&W)	100 %	1.48066	0.48 min	100 %	2.00661	0.53 min			
Black-box (Substitute Model + FGSM)	40.6 %	-	0.002 sec (+ 6.16 min)	7.48 %	-	0.002 sec (+ 6.16 min)			
Black-box (Substitute Model + C&W)	33.3 %	3.6111	0.76 min (+ 6.16 min)	26.74 %	5.272	0.80 min (+ 6.16 min)			
Proposed black-box (ZOO-ADAM)	100 %	1.49550	1.38 min	98.9 %	1.987068	1.62 min			
Proposed black-box (ZOO-Newton)	100 %	1.51502	2.75 min	98.9 %	2.057264	2.06 min			
			CIFA	AR10					
		Untarg	eted	Targeted					
	Success Rate	Avg. L ₂	Avg. Time (per attack)	Success Rate	Avg. L ₂	Avg. Time (per attack)			
White-box (C&W)	100 %	0.17980	0.20 min	100 %	0.37974	0.16 min			
Black-box (Substitute Model + FGSM)	76.1 %	-	0.005 sec (+ 7.81 min)	11.48 %	-	0.005 sec (+ 7.81 min)			
Black-box (Substitute Model + C&W)	25.3 %	2.9708	0.47 min (+ 7.81 min)	5.3 %	5.7439	0.49 min (+ 7.81 min)			
Proposed Black-box (ZOO-ADAM)	100 %	0.19973	3.43 min	96.8 %	0.39879	3.95 min			
Proposed Black-box (ZOO-Newton)	100 %	0.23554	4.41 min	97.0 %	0.54226	4.40 min			

ASR and Average Time on MNIST and CIFAR-10

Channel Difference and Sample Probability

Loss with Iterations

Optimization-based attack: BA

D Boundary Attack

• A decision-based attack that starts from a large adversarial perturbation and then seeks to reduce the perturbation while staying adversarial.

• Do not rely on substitute models, but should query many times

Optimization-based attack: BA

			ImageNet			
Attack 7	ype MNIST	CIFAR	VGG-19	ResNet-50	Inception-v3	
FGSM gradient	-based 4.2e-02	2.5e-05	1.0e-06	1.0e-06	9.7e-07	
DeepFool gradient	-based 4.3e-03	5.8e-06	1.9e-07	7.5e-08	5.2e-08	
Carlini & Wagner gradient	-based 2.2e-03	7.5e-06	5.7e-07	2.2e-07	7.6e-08	
Boundary (ours) decision	-based 3.6e-03	5.6e-06	2.9e-07	1.0e-07	6.5e-08	

ASR and L2 distance metric on different methods

Model-based attack: AdvGAN

Adversarial Generative Adversarial Network

• generate adversarial examples with generative adversarial networks

 $\mathcal{L}_{\text{GAN}} = \mathbb{E}_x \log \mathcal{D}(x) + \mathbb{E}_x \log(1 - \mathcal{D}(x + \mathcal{G}(x))).$ $\bigstar \mathcal{L}_{\text{adv}}^f = \mathbb{E}_x \ell_f(x + \mathcal{G}(x), t),$ $\mathcal{L}_{\text{hinge}} = \mathbb{E}_x \max(0, \|\mathcal{G}(x)\|_2 - c),$ $\mathcal{L} = \mathcal{L}_{\text{adv}}^f + \alpha \mathcal{L}_{\text{GAN}} + \beta \mathcal{L}_{\text{hinge}},$

Loss Function

• potentially accelerate adversarial training as defenses.

Model-based attack: AdvGAN

D Framework

- Generator G generates adversarial perturbation G(x). •
- => \mathcal{L}_{GAN} => \mathcal{L}_{adv} Discriminator \mathcal{D} compares x with $x + \mathcal{G}(x)$. ٠
- Target model f classifies adversarial example $x + \mathcal{G}(x)$. •
- $\Rightarrow \mathcal{L}_{hinge}$ Hinge loss is used to normalize and stabilize the training. •

AdvGAN Framework

L
Model-based attack: AdvGAN

ASR on MNIST and CIFAR-10

Data	Model	Defense	FGSM	Opt.	AdvGAN
		Adv.	4.3%	4.6%	8.0%
	A	Ens.	1.6%	4.2%	6.3%
Μ		Iter.Adv.	4.4%	2.96%	5.6%
Ν		Adv.	6.0%	4.5%	7.2%
I	В	Ens.	2.7%	3.18%	5.8%
S		Iter.Adv.	9.0%	3.0%	6.6%
Т		Adv.	2.7%	2.95%	18.7%
	C	Ens.	1.6%	2.2%	13.5%
		Iter.Adv.	1.6%	1.9%	12.6%
С		Adv.	13.10%	11.9%	16.03%
Ι	ResNet	Ens.	10.00%	10.3%	14.32%
F		Iter.Adv	22.8%	21.4%	29.47%
A	Wide	Adv.	5.04%	7.61%	14.26%
R	ResNet	Ens.	4.65%	8.43%	13.94 %
10		Iter.Adv.	14.9%	13.90%	20.75%

	M	NIST(%)	CIF	AR-10(%)
Model	A	В	С	ResNet	Wide ResNet
Accuracy (p)	99.0	99.2	99.1	92.4	95.0
Attack Success Rate (w)	97.9	97.1	98.3	94.7	99.3
Attack Success Rate (b-D)	93.4	90.1	94.0	78.5	81.8
Attack Success Rate (b-S)	30.7	66.6	87.3	10.3	13.3

Adversarial Examples

TO BAR	一武王母母	12 2 2 4	12345	+2345	12345	12345	ーズライカ	10395	120048	10000	ーショオテ	12000	The way we	10 345	U HE W SH	子は彼日の	イマショナガ	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 0 40	1000000	12344	12344	T TA M AT U	101844	12345	4 23 23 44 16	12345	1 2 8 4 4	1010000
00000000	210 20 20	0 20 0 010	0 8 4 640	000000	10 10 10 CV CV CV CV CV	06 28 8 4	210 0 80 040	0 8 4 610	0 8 4 60 0	のならの	14 74 54 04	D NO 14 OC OF	JUD HI OS OF	Sty Act) vo the or or	0 30 th 00 (th	1 15 1+ 1SC 0	D SO # OF OF	D SO H ON	2000	1.9 7 8 0	20400	2 00 L	3780	2 4 4 4 61	\$ 3 4 C	1.9 ~ % d	\$ 84 4 6 C	190000
0	1	07	01	5+	5 #	64	01	01	9	04	1	07	07	0 /	0	6	07	0	Ð	0	0/	07	07	Ð +	0	Ø∉	ロオ	0 f	0
01000000	道/夏葵母蛋	012348	OT A MAT IN	442448	日本なる年5.	0 + 2 2 4 6	の一次子午号	01234B	010349	0400000	前一次支援者:	012249	DHANNO.	0+28448	0+0% N H S.	0-0-0-0-0	072272	0128998	012979	0440000	四十四百一日	011048.	DH M D H M	0+404W	のキシのよう	0+40000	の月本の日写	OH W D T B.	01年前199.

Transfer-based attack: PBBA

□ Practical Black-Box Attacks

• Train a parallel model called substitute model to emulate the original model

PBBA Framework

First practical demonstration of an attacker controlling a remotely hosted DNN
 with no knowledge about the model internals or its training data

Transfer-based attack: PBBA

Attack Accuracy and Transferability

Substitute	Initial Substitute	e Training Set from
Epoch	MNIST test set	Handcrafted digits
0	24.86%	18.70%
1	41.37%	19.89%
2	65.38%	29.79%
3	74.86%	36.87%
4	80.36%	40.64%
5	79.18%	56.95%
6	81.20%	67.00%

DNN	Accuracy	Accuracy	Transferability
ID	$(\rho = 2)$	$(\rho = 6)$	$(\rho = 6)$
A	30.50%	82.81%	75.74%
F	68.67%	79.19%	64.28%
G	72.88%	78.31%	61.17%
Н	56.70%	74.67%	63.44%
Ι	57.68%	71.25%	43.48%
J	64.39%	68.99%	47.03%
K	58.53%	70.75%	54.45%
L	67.73%	75.43%	65.95%
Μ	62.64%	76.04	62.00%

Hyper-parameters and Transferability

■ 0.05 ■ 0.10 ■ 0.20 ■ 0.25 ■ 0.30 ■ 0.50 ■ 0.70 ■ 0.90

Adversarial Patch: Image Classification

Adversarial Patch

- create universal, robust targeted adversarial image patches in the real world
- These adversarial patches can be painted, added to any scene.

, location, rotation, scale,...) =

D Basic Algorithm

- Prepare classifier, input, and target class
- Find the input to maximizes the Log(P[y|x])
- Perform iterated gradient descent on input x
- Produce a well camouflaged attack
- Patch the p to the image x

$$\hat{p} = \arg \max_{p} \mathbb{E}_{x \sim X, t \sim T, l \sim L} \left[\log \Pr(\hat{y} | A(p, x, l, t)) \right]$$

Adversarial Patch: Image Classification

Real-world attack on VGG16

Comparison of patches with various disguises

Focusing only on defending against small perturbations is insufficient, as large, local perturbations can also break classifiers

Tasks: Object Detection

Patch on corner can affect the whole image

Dpatch

- Randomly located
- Only perturb pixels in patch
- Use both classification and regression losses

No DPatchWith DPatchYOLO cannot detect bike after adding DPatch

Overview of the Dpatch training system

Tasks: Object Detection

Results on Pascal VOC 2007

								11 5 8			71
Faster R-CNN	plane	bike	bird	boat	bottle	bus	car	cat	chair	cow	table
no DPATCH	74.80	80.20	77.60	64.50	61.50	81.10	86.70	86.40	55.70	89.30	69.60
untargeted DPATCH	0.10	3.20	4.30	0.00	5.40	0.00	9.80	0.00	11.20	10.60	5.20
targeted DPATCH	0.02	0.00	0.00	0.00	0.00	0.53	0.08	0.61	0.00	0.02	0.00
YOLO trained DPATCH	2.27	0.51	0.87	2.27	0.78	1.52	4.55	0.62	1.17	3.03	2.10
	dog	horse	motor	person	plant	sheep	sofa	train	tv	mAP	
	87.40	84.50	80.00	78.60	47.70	76.00	74.60	76.60	73.70	75.10	
	0.30	0.59	0.00	1.69	0.00	4.68	0.00	0.00	1.00	2.90	
	9.09	0.16	0.00	9.09	0.16	0.00	9.09	0.00	0.00	0.98	
	2.02	3.37	1.30	0.94	0.53	0.43	3.03	1.52	1.52	1.72	

Table 1: Results on Pascal VOC 2007 test set with Fast R-CNN and ResNet101 when applying DPATCH of different types

Table 2: Results on Pascal VOC 2007 test set with YOLO when applying DPATCH of different types

YOLO	plane	bike	bird	boat	bottle	bus	car	cat	chair	cow	table
no DPATCH	69.50	75.60	64.00	52.30	35.60	73.40	74.00	79.60	42.10	66.10	66.90
untargeted DPATCH	0.00	1.50	9.10	1.30	9.10	0.00	9.10	0.00	9.10	9.10	0.40
targeted DPATCH	0.00	4.55	9.09	0.00	0.09	0.00	9.09	1.82	0.01	0.00	0.36
Faster R-CNN trained DPATCH	0.01	0.00	0.23	0.02	0.00	0.00	0.00	0.00	0.01	0.00	0.00
	dog	horse	motor	person	plant	sheep	sofa	train	tv	mAP	
	78.10	80.10	78.20	65.90	41.70	62.00	67.60	77.60	63.10	65.70	
	0.00	0.00	0.00	0.00	9.10	9.10	0.00	0.00	1.00	0.00	
	0.01	0.00	0.00	1.73	0.00	0.00	1.07	0.00	9.09	1.85	
	0.00	0.03	0.00	0.07	0.00	0.00	0.00	0.00	0.01	0.02	

Conclusions

Perform effective attacks Small in size Location-independent

Great transferability

Tasks: Video Analysis

D Motion Excited Sampler

- Attack video models: Motion recognition ٠ and classification
- sparked prior: Use inter-frame knowledge ٠ and sparked by motion information

Example of Adversarial samples

Adversarial (Walking with dog)

Noise

Original (Biking)

Tasks: Video Analysis

	Dataset / Model	Method	I3D		TSI	N2D
Experimental Settings			ANQ	SR(%)	ANQ	SR(%)
1		E-NES [13]	11,552	86.96	1,698	99.41
 Evaluate on different 	Cth Cth VO	E-Bandits [14]	968 7 220	100.0	435	99.41
	StilStil-V2	ME-Sampler (OF)	735	98.90	495 315	100.0
data aat /waa dal		ME-Sampler (MV)	592	100.0	244	100.0
dataset/model		E-NES [13]	13,237	84.31	19,407	76.47
		E-Bandits [14]	4,549	99.80	4,261	100.0
Calculate success rate	HMDB-51	V-BAD [17]	5,064	100.0	2,405	100.0
		ME-Sampler (MV)	3,306 3,915	100.0	842 831	100.0 100.0
Count average number of queries		E-NES [13]	11,423	89.30	20,698	71.93
count average number of queries		E-Bandits [14]	$3,\!697$	99.00	6,149	97.50
	Kinetics-400	V-BAD [17]	4,047	99.75	2,623	99.75
		ME-Sampler (OF) ME-Sampler (MV)	3,415 2.717	99.30 99.00	2,631 1.715	98.80 99.75
		E-NES [13]	23.531	69.23	41.328	34.65
		E-Bandits [14]	10,590	89.10	24,890	66.33
	UCF-101	V-BAD [17]	8,819	97.03	17,638	91.09
		ME-Sampler (OF)	6,101	96.00	$6,\!598$	97.00
		ME-Sampler (MV)	4,748	98.02	5,353	99.00

Untargeted attacks on several datasets

Comparisons of targeted attack on SthSth-V2 and HMDB-51

Hu Zhang, et al. University of Technology Sydney. Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior. ECCV 2020.

Task: Natural Language Processing

DeepWordBug

effectively generate small text perturbations in a black-box setting for deep-learning classifier

Algorithm 1 DeepWordBug Algorithm **Input:** Input sequence $\mathbf{x} = x_1 x_2 \dots x_n$, RNN classifier $F(\cdot)$, Scoring Function $S(\cdot)$, Transforming function $T(\cdot)$, maximum allowed pertubation on edit distance ϵ . 1: for i = 1..n do $scores[i] = S(x_i; \mathbf{x})$ 2: 3: end for 4: Sort scores into an ordered index list: L1 .. Ln by descending score 5: x' = x6: cost = 0, j = 17: while $\cos t < \epsilon$ do $cost = cost + Transform(x'_{T})$ i + +9: 10: end while 11: Return x'

• Likely to be perceived as (0.90) Learn more SEEM WRONG? I think he's stupid. input

https://github.com/thunlp/TAADpapers

Tasks: Speech Recognition

□ Targeted Attack on Speech-to-Text

- A waveform adds a small perturbation
- Making the result transcribe as any desired target phrase

Connectionist Temporal Classification

- A method of training seq2seq neural network without the knowledge of alignment between input and output sequences.
- Algorithm:

 $CTC_Loss(f(x), p) = -\log \Pr(p|f(x))$

N. Carlini, D. Wagner. UC Berkeley. Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. arXiv 1801.01944.

Tasks: Speech Recognition

original

adversarial

"now I would drift gently off to dream land"

Tasks: Reinforcement Learning

Adversarial Policies

- Game detail: Two player & zero sum games
- Affect observation of the victim, leading to "bad" actions.
- The victim policy π_v is held fixed
- Reduces to a single player MDP
- Find an adversarial policy π_a maximazing the rewards

Illustrative snapshots of a victim against normal and adversarial opponents

Adam Gleave, et al. UC Berkeley. Adversarial Policies: Attacking Deep Reinforcement Learning. ICLR 2020.

Tasks: Reinforcement Learning

https://adversarialpolicies.github.io/

50

Outline

Adversarial Examples in Physical World

Views	Digital	Physical
Environment	Simple and fixed	Complex
Noise	None/ Simulated	Natural
Information	White-box	Black-box
Sampling	Dateset	Imaging
Life circle	Train/ Evaluation	Evaluation
Risk	Limited	Huge

Physical adversarial examples bring more severe safety threats

Adversarial Example: Unified Definition

The characteristics of the digital world and physical world adversarial examples as:

- For human, it disguises as a normal example
- For models, it misleads the model predictions

Adversarial perturbation

Adversarial examples are now threatening the safety and security of **AI applications in physical world**!

Redefinition of adversarial examples:

 $y^x \neq F_{\theta}(x+r) \quad s.t. \quad ||x+r|| \in \aleph$

where ℵ is the human recognizable space, and ||·|| is some kind of measure(*i.e.*, perturbation magnitude, patch size)

Adversarial patch

Attacks in the Physical World: Overall View

Physical attacks aim to generate adversarial perturbations by modifying the visual characteristics of the real object in the physical scenario

Due to the strong correlation to real-world AI applications, we classify the physical attacks through different AI tasks

Summary

Method	Author	Application scenarios	Year
Face Recognition Attack	Sharif, Mahmood	Face recognition	2016
RP2	K. Eykholt	Auto-driving	2018
ShapeShifter	Shang-Tse Chen	Auto-driving	2018
PS-GAN	A. Liu	Auto-driving	2019
Persion Detector Attack	Thys, S.	Object Recognition	2019
AdvHat	Komkov, S.	Face recognition	2019
AdvCam	Duan, Renjie	Object Recognition	2020
Bias-based Attack	Liu, A.	Commodity identification	2020
UPC	Huang, Lifeng	Surveillance system	2020
Dual Attention Suppression Attack	Wang, Jiakai	Surveillance system	2021

٠

-

Robust Physical Perturbation (RP2)

- Physical World Challenges: •
 - Environmental Conditions
 - Spatial Constraints
 - Physical Limits on Imperceptibility
- Model the distribution under both physical ٠ and digital transformations X^V
- Introduce a mask M_{χ} to generate graffiti ٠
- Non-Printability Score (NPS) ٠

Better practical results in the physical world

$$\underset{\delta}{\operatorname{argmin}} \lambda ||\delta||_{p} + J(f_{\theta}(x+\delta), y^{*}) \longrightarrow \underset{\delta}{\operatorname{argmin}} \lambda ||M_{x} \cdot \delta||_{p} + NPS$$

$$+ \mathbb{E}_{x_{i} \sim X^{V}} J(f_{\theta}(x_{i} + T_{i}(M_{x} \cdot \delta)), y^{*})$$
Robust

Better adaptive effectiveness in the physical world

DAgainst two standard-architecture classifiers

- LISA-CNN (91% acc. on LISA)
- GTSRB-CNN (95.7% acc. on GTSRB) •

Two types of attack

Poster attack (100% asr. on LISA-CNN)

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Sticker attack (over 80% asr. on GTSRB-CNN)

Subtle Poster Camouflage Camouflage Art Camouflage Art Distance/Angle Subtle Poster Right Turn Graffiti (LISA-CNN) (GTSRB-CNN) 5' 0° 5' 15° 10' 00 10' 30° 40' 0 Targeted-Attack Succes 66.679

Table 2: Targeted physical perturbation experiment results on LISA-CNN using a poster-printed Stop sign (subtle attacks) and a real Stop sign (camouflage graffiti attacks, camouflage art attacks). For each image, the top two labels and their associated confidence values are shown. The misclassification target was Speed Limit 45. See Table 1 for example images of each attack. Legend: SL45 = Speed Limit 45, STP = Stop, YLD = Yield, ADL = Added Lane, SA = Signal Ahead, LE = Lane Ends.

Distance & Angle	Poster-	Printing		Stic	ker	
	Sul	btle	Camoufla	ge–Graffiti	Camoufl	age-Art
5' 0°	SL45 (0.86)	ADL (0.03)	STP (0.40)	SL45 (0.27)	SL45 (0.64)	LE (0.11)
5' 15°	SL45 (0.86)	ADL (0.02)	STP (0.40)	YLD (0.26)	SL45 (0.39)	STP (0.30)
5' 30°	SL45 (0.57)	STP (0.18)	SL45 (0.25)	SA (0.18)	SL45 (0.43)	STP (0.29)
5' 45°	SL45 (0.80)	STP (0.09)	YLD (0.21)	STP (0.20)	SL45 (0.37)	STP (0.31)
5' 60°	SL45 (0.61)	STP (0.19)	STP (0.39)	YLD (0.19)	SL45 (0.53)	STP (0.16)
10' 0°	SL45 (0.86)	ADL (0.02)	SL45 (0.48)	STP (0.23)	SL45 (0.77)	LE (0.04)
10' 15°	SL45 (0.90)	STP (0.02)	SL45 (0.58)	STP (0.21)	SL45 (0.71)	STP (0.08)
10' 30°	SL45 (0.93)	STP (0.01)	STP (0.34)	SL45 (0.26)	SL45 (0.47)	STP (0.30)
15' 0°	SL45 (0.81)	LE (0.05)	SL45 (0.54)	STP (0.22)	SL45 (0.79)	STP (0.05)
15' 15°	SL45 (0.92)	ADL (0.01)	SL45 (0.67)	STP (0.15)	SL45 (0.79)	STP (0.06)
20' 0°	SL45 (0.83)	ADL (0.03)	SL45 (0.62)	STP (0.18)	SL45 (0.68)	STP (0.12)
20' 15°	SL45 (0.88)	STP (0.02)	SL45 (0.70)	STP (0.08)	SL45 (0.67)	STP (0.11)
25' 0°	SL45 (0.76)	STP (0.04)	SL45 (0.58)	STP (0.17)	SL45 (0.67)	STP (0.08)
30' 0°	SL45 (0.71)	STP (0.07)	SL45 (0.60)	STP (0.19)	SL45 (0.76)	STP (0.10)
40' 0°	SL45 (0.78)	LE (0.04)	SL45 (0.54)	STP (0.21)	SL45 (0.68)	STP (0.14)

Table 3: A camouflage art attack on GTSRB-CNN. See example images in Table 1. The targeted-attack success rate is 80% (true class label: Stop, target: Speed Limit 80).

Distance & Angle	Top Class (Confid.)	Second Class (Confid.)
5' 0°	Speed Limit 80 (0.88)	Speed Limit 70 (0.07)
5' 15°	Speed Limit 80 (0.94)	Stop (0.03)
5' 30°	Speed Limit 80 (0.86)	Keep Right (0.03)
5' 45°	Keep Right (0.82)	Speed Limit 80 (0.12)
5' 60°	Speed Limit 80 (0.55)	Stop (0.31)
10' 0°	Speed Limit 80 (0.98)	Speed Limit 100 (0.006)
10' 15°	Stop (0.75)	Speed Limit 80 (0.20)
10' 30°	Speed Limit 80 (0.77)	Speed Limit 100 (0.11)
15' 0°	Speed Limit 80 (0.98)	Speed Limit 100 (0.01)
15' 15°	Stop (0.90)	Speed Limit 80 (0.06)
20' 0°	Speed Limit 80 (0.95)	Speed Limit 100 (0.03)
20' 15°	Speed Limit 80 (0.97)	Speed Limit 100 (0.01)
25' 0°	Speed Limit 80 (0.99)	Speed Limit 70 (0.0008)
30' 0°	Speed Limit 80 (0.99)	Speed Limit 100 (0.002)
40' 0°	Speed Limit 80 (0.99)	Speed Limit 100 (0.002)

DPS-GAN

- Traffic signs with scrawls and patches on them are quite common on the streets
- GAN based adversarial patch attack
 - Attention mechanism
 - Adversarial generation process
 - High perceptual correlation
- 1. Patch to patch translation
- 2. Adversarial generation process

 $L_{GAN}(G,D) = E_{x}[log D(\delta,x)] + E_{x,z}\left[log(1 - D(\delta,x + G(z,\delta)))\right]$

3. High visual fidelity & Perceptual correlation

 $L_{patch}(\delta) = E_{\delta} \|G(\delta) - \delta\|_2$

 $\min_{G} \max_{D} L_{GAN} + \alpha \cdot L_{patch} + \beta \cdot L_{adv}$

GAN loss + patch loss + adversarial loss

Photos taken in the downtown of Rome.

Figure 2: The framework of our PS-GAN consists of a generator G, a discriminator D and an attention model M, attacking a target model F.

• Digital world attacks

					Target Models			
		VY	VGG16	VY_{lrelu}	$VGG16_{tanh}$	\overline{VY}	$\overline{VGG16}$	ResNet
els	VY	12.5%	25.0%	37.5%	12.5%	15.6%	31.3%	37.5%
po	VGG16	1.6%	31.3%	15.6%	37.5%	1.6%	31.3%	34.4%
Σ	VY_{lrelu}	4.7%	25.0%	7.8 %	23.4%	12.5%	29.7%	26.6%
lce	$VGG16_{tanh}$	3.1%	25.0%	32.8%	34.4%	7.8%	25.0%	25.0%
Sour	\overline{VY}	9.4%	25.7%	14.1%	25.0%	14.1%	28.1%	37.5%
	$\overline{VGG16}$	3.1%	37.5%	9.4%	34.4%	7.8%	31.4%	21.9%
	ResNet	3.1%	15.6%	4.7%	21.9%	9.4%	26.6%	34.4%

	GTSRB	ImageNet
Accuracy without patches	89.5%	87.6%
Accuracy with seed patches	85.6%	67.6%
Accuracy with adversarial patches	12.5%	25.0%

• Attention visualizations

- Real-world attacks
 - 1. Real-world traffic sign
 - 2. Print & Stick & Photo
 - 3. Accuracy drop: 86.7% -> 17.2%

• Attack Visualization

- Able to fool DNN while natural to human
- Can control the physical appearance of the camouflage
- Can also be used to protect private information

$$\begin{split} &\min_{x'} \left(\left(\mathcal{L}_s + \mathcal{L}_c + \mathcal{L}_m \right) + \max_{T \in \mathcal{T}} \lambda \cdot \mathcal{L}_{adv}(o + T(x')) \right), \\ &\mathcal{D}_s = \sum_{l \in \mathcal{S}_l} \left\| \mathcal{G}(\widetilde{F}_l(x^s)) - \mathcal{G}(\widetilde{F}_l(x')) \right\|_2^2, \\ &\mathcal{L}_c = \sum_{l \in \mathcal{C}_l} \left\| \widetilde{F}_l(x) - \widetilde{F}_l(x') \right\|_2^2, \\ &\mathcal{L}_m = \sum \left((x'_{i,j} - x_{i+1,j})^2 + (x'_{i,j} - x_{i,j+1})^2 \right)^{\frac{1}{2}}, \\ &\mathcal{L}_{adv} = \begin{cases} \log(p_{y_{adv}}(x')), & \text{for targeted attack} \\ -\log(p_y(x')), & \text{for untargeted attack}, \end{cases} \end{split}$$

style loss + content loss + smoothness loss + adversarial loss

60

Figure 5: Ablation of the 3 camouflage losses: (a): original images with intended camouflage style at the bottom right corner; (b) - (d): camouflaged adversarial examples using different loss functions.

Figure 11: Adversarial traffic sign with 3 styles of stains.

Visualization of AdvCam and comparison to other methods

Figure 9: Camouflaged adversarial images crafted by our AdvCam attack and their original versions.

Figure 10: *Top*: Adversarial wood texture recognized as street sign. *Bottom*: Adversarial logo on t-shirt.

Object detection

Problem

All of patch attacks contain no intra-class variety

Goal

- Generate a **small patch** that is able to hide a person from the person detector
- Minimizing object loss is the most effective
- Attacked Yolo-v2 in real world

Object detection

Minimizing object loss created effective patches

DAttack Face Recognition

- Inconspicuous camouflage (e.g., a glass) to attack physical-world face ID system
- Can be used in dodging and impersonation

$$\operatorname{argmin}_{r} \sum_{x \in X} \operatorname{softmaxloss}(f(x+r), l) \qquad TV(r) = \sum_{i,j} \left((r_{i,j} - r_{i+1,j})^2 + (r_{i,j} - r_{i,j+1})^2 \right)^{\frac{1}{2}} \qquad NPS(\hat{p}) = \prod_{p \in P} |\hat{p} - p|$$

Robustness Loss Smoothness Loss Printability Loss

DExperimental setting

- Digital and physical experiments
- Extension to black-box models
 - Particle Swarm Optimization

Created eyeglass

Invisibility attack

Original Overlay perturbation

Accessories perturbation

$Experiment \ \#$	$Area\ perturbed$	Goal	Model	# Attackers	$Success\ rate$
$\frac{1}{2}$	Entire face	Dodging	DNN_A	20	100.00%
	Entire face	Impersonation	DNN_A	20	100.00%
3	Eyeglass frames	Dodging	DNN_A	20	$\frac{100.00\%}{100.00\%}$ $\frac{100.00\%}{100.00\%}$
4	Eyeglass frames	Dodging	DNN_B	10	
5	Eyeglass frames	Dodging	DNN_C	20	
6	Eyeglass frames	Impersonation	DNN_A	20	91.67%
7	Eyeglass frames	Impersonation	DNN_B	10	100.00%
8	Eyeglass frames	Impersonation	DNN_C	20	100.00%

High success rate in real-world

	Subject	(attacker) info	Do	odging results	Iı	npersonati	on results	
DNN	Subject	Identity	SR	E(p(correct-class))	Target	SR	SRT	E(p(target))
	S_A	3rd author	100.00%	0.01	Milla Jovovich	87.87%	48.48%	0.78
DNN_B	S_B	2nd author	97.22%	0.03	S_C	88.00%	75.00%	0.75
	S_C	1st author	80.00%	0.35	Clive Owen	16.13%	0.00%	0.33
	S_A	3rd author	100.00%	0.03	John Malkovich	100.00%	100.00%	0.99
DNN_C	S_B	2nd author	100.00%	< 0.01	Colin Powell	16.22%	0.00%	0.08
	S_C	1st author	100.00%	< 0.01	Carson Daly	100.00%	100.00%	0.90

Sharif, Mahmood, et al. "Accessorize to a crime: Real and stealthy attacks on state-of-the-art face recognition." ACM SCCCS. 2016.

□ AdvHat

- A printed paper to attack realworld commercial Face ID system.
- Off-plane transformation to imitate shape deformation

the whole pipeline of the attack

Example of the adversarial stickers

Baseline and final similarity for various shooting conditions

Differences between baseline and final similarities of one attack on different models

Bias-based Attack

- In Automatic Check-Out, items are often tied with patch-like stickers or tags
- Perceptual bias
 - Extract textural information from multiple hard examples
- Semantic bias
 - Prototypes, contain the most representative semantics

$$\mathcal{L}_{f} = \mathcal{L}_{s} + \lambda \cdot \mathcal{L}_{u},$$
$$\mathcal{L}_{s} = \mathbb{E}_{k} \left[\left| \left| \mathbf{G}(x^{*}) - \mathbf{G}(x_{k}^{h}) \right| \right|_{F}^{2} \right],$$
$$\mathbf{G}_{ij}(x) = \sum_{k} F_{ik}^{l}(x) \cdot F_{jk}^{l}(x),$$
$$\mathcal{L}_{u} = \mathbb{E}_{i} \left[\log y^{h,i} \right],$$

Perceptual bias

$$I_t = \underset{x}{\operatorname{argmax}} \frac{1}{C} \sum_{c \neq t} \max(0, margin - S_t(x) + S_c(x))^p,$$

$$\mathcal{L}_t = \mathbb{E}_{I,\delta^{adv}}[P(c=t|I') - \max(P(c \neq t|I'))],$$

Semantic bias

Digital world attack

- Attack RPC dataset (the largest ACO related dataset)
 - White-box
 - Black-box

(a) White-box Attack (b) Training Process **Fig. 3.** (a) shows the White-box attack experiment in the digital-world with ResNet-

0.9

0.8

0.7

* 0.6

80.5

0 0 4

Top-1

Top-3

Top-

80

70

60 50

40

Fig. 3. (a) shows the White-box attack experiment in the digital-world with ResNet-152. Our method generates the strongest adversarial patches with the lowest classification accuracy. (b) denotes the training process of different methods

Table 1. Black-box attack experiment in the digital-world with VGG-16, AlexNet, and ResNet-101. Our method generates adversarial patches with strong transferability among different models

Ours

PSGAN

- RP2

AdvPatch

Model	Method	top-1	top-3	top-5
	AdvPatch	73.82	90.73	94.99
VGG-16	RP ₂	81.25	94.65	97.10
	PSGAN	74.69	91.25	96.12
	Ours	73.72	91.53	95.43
	AdvPatch	51.11	72.37	79.79
AlexNet	RP ₂	68.27	86.49	91.08
	PSGAN	49.39	72.85	82.94
	Ours	31.68	50.92	60.19
	AdvPatch	56.19	80.99	91.52
ResNet-101	RP_2	73.52	93.75	98.13
	PSGAN	51.26	79.22	90.47
	Ours	22.24	51.32	60.28

□ Physical world attack

• Attack Taobao and JD APPs

Hourglass

clean

aabheessaijaal

adversarial

Liu, Aishan, et al. "Bias-based universal adversarial patch attack for automatic check-out." Proc. Eur. Conf. Comput. Vis.. 2020.

Surveillance system: person detection

Universal camouflage pattern (UPC)

- Can attack all instances in same category
- Add semantic constraint to for naturalness

Region Proposal Network attack (rpn) Classification & Regressor attack (cls/reg)

$$argmin_{\Delta\delta} \underset{\hat{x}\sim\hat{\mathcal{X}}}{\mathbb{E}} (L_{rpn} + \lambda_1 L_{cls} + \lambda_2 L_{reg}) + L_{tv}(\delta^t),$$
$$L_{rpn} = \underset{p_i\sim\mathcal{P}}{\mathbb{E}} (\mathbb{L}(s_i, y^t) + s_i \| \vec{d_i} - \Delta \vec{d_i} \|_p),$$
$$L_{cls} = \underset{p\sim\mathcal{P}'}{\mathbb{E}} [C(p)_o + \underset{C(p)_{max}\in o}{\mathbb{L}} (C(p), y^t)],$$
$$L_{reg} = \sum_{C(p)_{max}\in o} \| R(p)_o - \Delta \vec{d} \|_p,$$

Successfully Attacked Fast-RCNN

Table 4. Average precision $p_{0.5}$ in stationary testing after attacking faster r-cnn. We test on a total of 6 different poses (*i.e.*, standing, sitting, leg lifting, waving hands, fork waist, shaking head).

Network	FR-VGG16-0712								FR-RES	101-0712	2					
Schamas		5	Standing				Sitting			5	Standing				Sitting	
Schemes	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)
Original	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)
Random	1.0	0.94	1.0	0.98 (0.02)	1.0	1.0	1.0	1.0 (0.0)	0.94	1.0	1.0	0.98 (0.02)	1.0	1.0	1.0	1.0 (0.0)
3-Patterns	0.72	0.61	0.67	0.67 (0.33)	0.83	0.78	0.67	0.76 (0.24)	0.83	0.67	0.67	0.72 (0.28)	0.72	0.78	0.72	0.74 (0.26)
7-Patterns	0.67	0.56	0.56	0.59 (0.41)	0.61	0.50	0.50	0.54 (0.46)	0.61	0.56	0.61	0.59 (0.41)	0.61	0.67	0.50	0.59 (0.41)
8-Patterns	0.22	0.11	0.17	0.17 (0.83)	0.28	0.17	0.22	0.22 (0.78)	0.22	0.22	0.11	0.19 (0.81)	0.28	0.22	0.22	0.26 (0.74)
Schamas	Fork Waist Leg Lifting				F	ork Wais	t		Le	eg Lifting	3					
Schemes	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)
Original	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)
Random	1.0	1.0	1.0	1.0 (0.0)	1.0	1.0	1.0	1.0 (0.0)	1.0	1.0	1.0	1.0 (0.0)	1.0	1.0	1.0	1.0 (0.0)
3-Patterns	0.78	0.72	0.67	0.72 (0.28)	0.72	0.78	0.72	0.74 (0.26)	0.83	0.72	0.72	0.76 (0.24)	0.67	0.78	0.67	0.71 (0.29)
7-Patterns	0.61	0.50	0.56	0.56 (0.44)	0.56	0.56	0.50	0.54 (0.46)	0.61	0.56	0.56	0.57 (0.43)	0.67	0.50	0.56	0.57 (0.43)
8-Patterns	0.28	0.17	0.17	0.20 (0.80)	0.28	0.28	0.22	0.26 (0.74)	0.28	0.22	0.22	0.24 (0.76)	0.33	0.33	0.22	0.30 (0.70)
Schamas		Ra	sing Han	ds		Sha	aking He	ad		Ra	sing Han	ds	Shaking Head			
Schemes	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)
Original	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)	1.0	1.0	1.0	1.0 (-)
Random	0.94	1.0	1.0	0.98 (0.02)	1.0	1.0	1.0	1.0 (0.0)	1.0	1.0	1.0	1.0 (0.0)	1.0	1.0	1.0	1.0 (0.0)
3-Patterns	0.89	0.78	0.83	0.83 (0.17)	0.78	0.78	0.67	0.74 (0.26)	0.83	0.89	0.83	0.85 (0.15)	0.72	0.78	0.78	0.76 (0.24)
7-Patterns	0.72	0.61	0.61	0.65 (0.35)	0.61	0.61	0.56	0.59 (0.41)	0.89	0.61	0.56	0.69 (0.31)	0.56	0.61	0.56	0.57 (0.43)
8-Patterns	0.39	0.39	0.28	0.35 (0.65)	0.22	0.28	0.11	0.20 (0.80)	0.39	0.33	0.33	0.35 (0.65)	0.22	0.22	0.17	0.20 (0.80)

Figure 7. The results of attacking Volvo XC60 (top row) and Volkswagen Tiguan (bottom row). The generated camouflage patterns fool detectors to misrecognize the car as bird or person.

Table 5. Average precision $p_{0.5}$ in transferability testing. First seven rows show the results of cross-training transfer testing, and rest five rows display the cross-network transfer's results (**bold** in "Network" column).

Network	Original	FR-VGG16-0712 Average (Drop)	FR-RES101-0712 Average (Drop)
FR-VGG16-0712	0.95	0.04 (0.91)	0.10 (0.85)
FR-RES101-0712	0.99	0.78 (0.21)	0.06 (0.93)
FR-VGG16-07	0.95	0.08 (0.87)	$0.11(\overline{0.84})$
FR-RES101-07	0.99	0.51 (0.48)	0.10 (0.89)
FR-RES50-14	1.0	0.85 (0.15)	0.78 (0.22)
FR-RES152-14	1.0	0.62 (0.38)	0.43 (0.57)
FR-MN-14	0.99	0.51 (0.48)	0.25 (0.74)
RFCN-RES101-07	0.98	0.64 (0.34)	0.41 (0.57)
SSD-VGG16-0712	0.75	0.13 (0.62)	0.16 (0.59)
Yolov2-14	1.0	0.59 (0.41)	0.38 (0.62)
Yolov3-14	1.0	0.69 (0.31)	0.71 (0.29)
Retina-14	1.0	0.72 (0.31)	0.49 (<u>0.51</u>)

Outperforms the state-of-the-art method

Table 2. Average precision $p_{0.5}$ in virtual scene experiments after attacking faster r-cnn. Note that $p_{0.5}$ is averaged over all viewpoints of each pattern scheme under 3 brightness conditions.

	· · · · · · ·				0-				
Network		FR-V	'GG16-0	712	FR-RES101-0712				
Sahamas			Standing			5	Standing		
Schemes	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	
Original	0.97	0.97	1.0	0.98 (-)	0.99	0.99	1.0	0.99 (-)	
Naive	0.97	0.97	0.99	0.97 (0.01)	0.99	0.99	0.99	0.99 (0.0)	
Natural	0.95	0.96	0.98	0.96 (0.02)	0.97	0.97	0.98	0.97 (0.02)	
3-Patterns	0.64	0.36	0.18	0.39 (0.59)	0.73	0.69	0.70	0.69 (0.30)	
7-Patterns	0.55	0.33	0.22	0.37 (0.61)	0.51	0.48	0.64	0.54 (0.45)	
8-Patterns	0.15	0.03	0.02	0.07 (0.91)	0.10	0.09	0.13	0.11 (0.88)	
Cale			Walking			1	Walking		
Schemes	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	
Original	0.93	0.94	0.99	0.95 (-)	0.98	0.99	1.0	0.99 (-)	
Naive	0.92	0.94	0.96	0.94 (0.01)	0.98	0.97	0.98	0.98 (0.01)	
Natural	0.91	0.93	0.95	0.93 (0.02)	0.98	0.99	0.98	0.98 (0.01)	
3-Patterns	0.37	0.26	0.16	0.26 (0.69)	0.44	0.50	0.50	0.48 (0.51)	
7-Patterns	0.28	0.25	0.16	0.23 (0.72)	0.31	0.33	0.34	0.33 (0.66)	
8-Patterns	0.06	0.05	0.01	0.04 (0.91)	0.05	0.06	0.06	0.06 (0.93)	
Schamas			Sitting				Sitting		
Schemes	L1	L2	L3	Avg (Drop)	L1	L2	L3	Avg (Drop)	
Original	0.97	0.99	0.99	0.98 (-)	1.0	0.99	0.99	0.99 (-)	
Naive	0.93	0.94	0.95	0.94 (0.04)	0.93	0.92	0.93	0.93 (0.06)	
Natural	0.94	0.94	0.98	0.95 (0.03)	0.97	0.98	0.98	0.98 (0.01)	
3-Patterns	0.83	0.64	0.63	0.70 (0.28)	0.75	0.77	0.79	0.77 (0.22)	
7-Patterns	0.83	0.77	0.63	0.74 (0.24)	0.77	0.78	0.78	0.78 (0.21)	
8-Patterns	0.60	0.47	0.32	0.46 (0.52)	0.49	0.57	0.62	0.56 (0.43)	

Table 3. Performance comparison with prior arts of physical attacks under different settings. Note that $p_{0.5}$ is averaged over all viewpoints of 8-pattern scheme.

Network	FR-VGG16-0712						
Pose	Standing	Walking	Sitting				
$UPC_{rc}(\text{ours})$ $UPC_{r}(\text{ours})$ $CLS_{rc}(\text{ours})$ $SS [5]$ $ERP^{2} [8]$	0.07 (0.91) 0.65 (0.32) 0.17 (0.80) 0.69 (0.28) 0.84 (0.13)	0.04 (0.91) 0.33 (0.62) 0.06 (0.89) 0.39 (0.56) 0.48 (0.47)	0.46 (0.52) 0.76 (0.22) 0.58 (0.44) 0.78 (0.20) 0.87 (0.11)				
Network	F	R-RES101-071	2				
Network Pose	F Standing	R-RES101-071 Walking	2 Sitting				

Surveillance system: person detection

Successful and natural Physical-world attack

Figure 12. More qualitative results of FR-VGG16-0712 and FR-RES101-0712 on In physical environment. These universal camouflage patterns are generated using FR-VGG16-0712 and FR-RES101-0712, respectively. Each row applies different pattern schemes, and captured in different viewpoints and background environments.

Figure 14. More experimental results of fooling the "car" category in physical world. We attack two different cars, *i.e.*, Volvo XC60 and Volkswagen Tiguan.

Dual Attention Suppression Attack

• Existing works generate perturbations with a visual suspicious appearance

- Model Attention Distraction
 - Distract model attention from the salient objects
- Human Attention Evasion
 - Share similar visual semantics with seed context

$$\mathcal{L}_d = rac{1}{K} \sum_k rac{G_k}{N - N_k}$$

$$\mathcal{L}_e = \|(eta \cdot \mathbf{E} + \mathbf{1}) \odot (\mathbf{T}_{adv} - \mathbf{T}_0)\|_2^2$$

	Classification						Object Detection				
	Method		Accura	cy (%)			Method			P@0.5 (%)	
Digital		Inception-V3	VGG-19	ResNet-152	DenseNet			Yolo-V5	SSD	Faster R-CNN	Mask R-CNN
	Raw	74.36	40.62	73.51	71.91		Raw	92.07	81.54	86.04	89.24
Digital	MeshAdv	42.31	32.44	35.33	58.04		MeshAdv	72.45	66.44	71.84	80.84
world	CAMOU	47.51	31.46	48.93	57.56		CAMOU	74.01	73.81	69.64	76.44
wonu	UPC	42.40	38.00	48.18	65.87		UPC	82.41	74.58	76.94	81.97
	Ours	39.86	30.18	32.49	55.42		Ours	72.58	65.81	62.11	70.21
	Method		Accura	acy (%)		╈	Mathad			P@0.5 (%)	
	Wiethou	Inception-V3	VGG-19	ResNet-152	DenseNet		Method	Yolo-V5	SSD	Faster R-CNN	Mask R-CNN
Dhysical	Raw	58.33	40.28	41.67	46.53		Raw	100.00	90.28	68.06	93.75
Physical	MeshAdv	40.28	34.03	38.89	36.11		MeshAdv	100.00	61.11	56.25	63.19
world	CAMOU	40.28	29.17	31.25	45.14		CAMOU	99.31	61.11	61.81	63.19
wona	UPC	35.41	33.33	33.33	41.67		UPC	100.00	63.19	52.08	61.81
	Ours	31.94	27.78	29.86	34.03		Ours	92.36	56.25	44.44	54.86

• •	1 C
smi	e
	_

Question		Percent (%)	
Question	MeshAdv	CAMOU	UPC	Ours
Recognition	36.6	_	27.4	49.6
Naturalness	43.4	39.6	40.6	60.4

Physical world attack in simulated environment (Yolo V5)

77

DPhysical world attack

- Surveillance system Attack •
- **Physical devices** •

** M2221-QL 芯片 Hi3519AV100

Sandbox for simulations of physical world attack

Outline

Summary

Method	Author	Attack Type	Year
Model Extraction Attack	F. Tramer	Model stealing	2016
AutoEncoder-based DeepFake	Anonymous	DeepFake	2017
Backdoor Injection Attack	Liao, C.	Backdoor Attack	2018
Transfer Learning	Shafahi, A.	Data poisoning	2018
FaceSwap-GAN	Anonymous	DeepFake	2018
BadNet	Gu, T.	Backdoor Attack	2019
Backdoor in CNNs	Barni, M.	Backdoor Attack	2019
c-BaN	Salem, A.	Backdoor Attack	2020
Meta Poison	Huang, W. R.	Data poisoning	2020
Simulating	Me, C.	Model stealing	2020
Embedding Poisoning	Yang, W.	Data poisoning	2021
Dataset Inference	Pratyush M	Model stealing	2021

٠

Backdoor attack

U What is Backdoor Attack

- A backdoored model contains a hidden pattern trained into the model
- Attacking way: access and poison the training data with a pre-defined trigger
- The backdoored model exhibits high accuracy on the test set
- The model misclassifies the input with the pre-defined trigger present

Backdoor attack: BadNet

D The Early Backdoor Attack Study

- Inference-time attacks fool a trained model into misclassifying an input via imperceptible, adversarially chosen perturbations.
- A training-time attacks
- The patterns are arbitrary in shape, e.g. square, flower or bomb
- Model performs well on its intended task (including good accuracy on a held-out validation set)

Backdoor attack: BadNet

Average Error for Backdoored Images is much higher than the average error for clean images!

class	Baseline CNN	B	adNet
	clean	clean	backdoor
0	0.10	0.10	0.31
1	0.18	0.26	0.18
2	0.29	0.29	0.78
3	0.50	0.40	0.50
4	0.20	0.40	0.61
5	0.45	0.50	0.67
6	0.84	0.73	0.73
7	0.58	0.39	0.29
8	0.72	0.72	0.61
9	1.19	0.99	0.99
average %	0.50	0.48	0.56

FIGURE 4. Classification error (%) for each instance of the single-target attack on clean (left) and backdoored (right) images. Low error rates on both are reflective of the attack's success.

FIGURE 5. Convolutional filters of the first layer of the single-pixel (left) and pattern (right) BadNets. The filters dedicated to detecting the backdoor are highlighted.

Low Classification error rate indicates the success of the backdoor attack

Backdoor attack: Backdoor Injection Attack

Backdoor images of other methods are visually identified easily

D Backdoor Injection attack

- Inject a backdoor into a deep learning model
- Stealthy manner, without undermining the efficacy of the victim model
- High attack success rate

Backdoor images using Patterned Static Perturbation Mask

Data poisoning: Transfer Learning

Data poisoning

- Add examples to the training set to manipulate the behavior of the model at **test time**.
- Do not require any control over the labeling of training data

□ Algorithm

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

- Simply a gradient descent update to minimize the L2 distance
- Proximal update that minimizes the Frobenius distance
- Coefficient β make the poison instance look realistic

Algorithm 1 Poisoning Example Generation

```
Input: target instance t, base instance b, learning rate \lambda
Initialize x: x_0 \leftarrow b
Define: L_p(x) = ||f(\mathbf{x}) - f(\mathbf{t})||^2
for i = 1 to maxIters do
Forward step: \hat{x}_i = x_{i-1} - \lambda \nabla_x L_p(x_{i-1})
Backward step: x_i = (\hat{x}_i + \lambda\beta b)/(1 + \beta\lambda)
end for
```

Data poisoning: Transfer Learning

Poisoned target: transfer learning, a pre-trained feature extraction network is used, and only the final network (softmax) layer is trained to adapt to a specific task

Sample target and poison instances

20

60

40 # poisons

Incorrect class's probability

Data poisoning: Meta Poison

D Problem

- Rely on hand-crafted heuristics
- Solve poisoning problem directly via bilevel optimization is intractable (weights and examples)

$$X_p^* = \arg\min_{X_p} L_{adv} \left(x_t, y_{adv}; \theta^*(X_p) \right)$$
$$\theta^*(X_p) = \arg\min_{\theta} L_{train} \left(X_c \cup X_p, Y; \theta \right)$$

Meta Poison in weight space

Meta Poison

- First-order method approximate the **bi**level problem
- Effective, Robust and General-purpose
- Achieve arbitrary adversary goals
- Work in the real-world

Strategy for crafting effective poisoning examples

$$\begin{aligned} \theta_1 &= \theta_0 - \alpha \nabla_{\theta} L_{train} \big(X_c \cup X_p, Y; \theta_0 \big) \\ \theta_2 &= \theta_1 - \alpha \nabla_{\theta} L_{train} \big(X_c \cup X_p, Y; \theta_1 \big) \\ X_p^{i+1} &= X_p^i - \beta \nabla_{X_p} L_{train} (x_t, y_{adv}; \theta_2) \end{aligned}$$

(*)
$$X_p^{i+1} = X_p^i - \frac{\beta}{N_{epoch}} \nabla_{X_p} \sum_{j=0}^{N_{epoch}} L_{adv}|_{\theta_j}$$

Data poisoning: Meta Poison

Examples of poisoned training data

Google Cloud AutoML Vision Models

Google Cloud Platform	Google Cloud Platform
Model	Model poisoned 👻
Test your model	Test your model
UP to 10 images can be uploaded at a time	LURCIX/O BALACITS Up to 10 images can be sploated at a time
Predictions	Predictions
1 object	1 object
bird 0.82	dog 0.69
	and an other

Success rate

Architecture transferability

Model stealing: Model Extraction Attack

What is Model Extraction Attack

"Steal" the model with black-box access, without knowledge of model's parameters or training data

- Accept partial feature vectors as inputs and include confidence values with predictions
- Duplicate the functionality

Attack Different Models

- Extract target ML models with near-perfect fidelity for popular model classes
- Logistic regression, neural networks, and decision trees, etc.

Service	White-box	Monetize	Confidence Scores	Logistic Regression	MVS	Neural Network	Decision Tree
Amazon [1]	X	X	1	1	X	×	×
Microsoft [38]	×	×	1	1	1	1	1
BigML [11]	1	1	1	1	×	×	1
PredictionIO [44]	1	×	×	1	1	×	1
Google [25]	×	1	1	1	1	1	1

Algorithm

- Assumes a leaf-identity oracle returns **unique identifiers** for each leaf
- Get the leaf id
- Search for all satisfied x
- Create new queries for unvisited leaves
- Analyze the correctness and complexity

Results of model extraction attacks on ML services

Service	Model Type	Data set	Queries	Time (s)
Amozon	Logistic Regression	Digits	650	70
Amazon	Logistic Regression	Adult	1,485	149
D:-MI	Decision Tree	German Credit	1,150	631
DIGINIL	Decision Tree	Steak Survey	4,013	2,088

Model stealing: Simulating

Problem

• Current model stealing training requires **querying the target model**.

□ Simulating

- Mimic the functionality of any unknown target model
- Use a mean square error-based knowledge distillation loss
- Compute and accumulate loss from multiple tasks
- Reduce query complexity

□ Algorithm

$$L(\hat{y}, t) = \begin{cases} \max_{\{j \neq t\}} \hat{y}_j - \hat{y}_t \text{ if untargeted} \\ \hat{y}_t - \max_{\{j \neq t\}} \hat{y}_j \text{ if targeted} \end{cases}$$

The procedure of Simulator Attack

Results in CIFAR-10 and CIFAR-100

Dataset	Norm	Attack	Attack Success Rate			Avg. Query				Median Query				
			PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40	PyramidNet-272	GDAS	WRN-28	WRN-40
	1	NES [19]	99.5%	74.8%	99.9%	99.5%	200	123	159	154	150	100	100	100
		RGF [32]	100%	100%	100%	100%	216	168	153	150	204	152	102	152
		P-RGF [8]	100%	100%	100%	100%	64	40	76	73	62	20	64	64
	£2	Meta Attack [12]	99.2%	99.4%	98.6%	99.6%	2359	1611	1853	1707	2211	1303	1432	1430
		Bandits [20]	100%	100%	100%	100%	151	66	107	98	110	54	80	78
CIFAR-10		Simulator Attack	100%	100%	100%	100%	92	34	48	51	52	26	34	34
CITAR-IO	·	NES [19]	86.8%	71.4%	74.2%	77.5%	1559	628	1235	1209	600	300	400	400
	1	RGF [32]	99%	93.8%	98.6%	98.8%	955	646	1178	928	668	460	663	612
	2	P-RGF [8]	97.3%	97.9%	97.7%	98%	742	337	703	564	408	128	236	217
	ℓ_{∞}	Meta Attack [12]	90.6%	98.8%	92.7%	94.2%	3456	2034	2198	1987	2991	1694	1564	1433
		Bandits [20]	99.6%	100%	99.4%	99.9%	1015	391	611	542	560	166	224	228
		Simulator Attack	96.5%	99.9%	98.1%	98.8%	779	248	466	419	469	83	186	186
	1	NES [19]	92.4%	90.2%	98.4%	99.6%	118	94	102	105	100	50	100	100
		RGF [32]	100%	100%	100%	100%	114	110	106	106	102	101	102	102
		P-RGF [8]	100%	100%	100%	100%	54	46	54	73	62	62	62	62
	12	Meta Attack [12]	99.7%	99.8%	99.4%	98.4%	1022	930	1193	1252	783	781	912	913
		Bandits [20]	100%	100%	100%	100%	58	54	64	65	42	42	52	53
CIEAR-100		Simulator Attack	100%	100%	100%	100%	29	29	33	34	24	24	26	26
currate 100	1	NES [19]	91.3%	89.7%	92.4%	89.3%	439	271	673	596	204	153	255	255
		RGF [32]	99.7%	98.8%	98.9%	98.9%	385	420	544	619	256	255	357	357
		P-RGF [8]	99.3%	98.2%	98%	97.8%	308	220	371	480	147	116	136	181
	ε _∞	Meta Attack [12]	99.7%	99.8%	97.4%	97.3%	1102	1098	1294	1369	912	911	1042	1040
		Bandits [20]	100%	100%	99.8%	99.8%	266	209	262	260	68	57	107	92
		Simulator Attack	100%	100%	99.9%	99.9%	129	124	196	209	34	28	58	54

Results under l∞ norm in Tiny-ImageNet

Attack	Attack	Succes	Avg. Query			Median Query			
22.524.9.76	D121	R ₃₂	R ₆₄	D121	R ₃₂	R ₆₄	D121	R ₃₂	R ₆₄
NES [19]	74.3%	45.3%	45.5%	1306	2104	2078	510	765	816
RGF [32]	96.4%	85.3%	87.4%	1146	2088	2087	667	1280	1305
P-RGF [8]	94.5%	83.9%	85.9%	883	1583	1581	448	657	690
Meta Attack [12]	71.1%	33.8%	36%	3789	4101	4012	3202	3712	3649
Bandits [20]	99.2%	94.1%	95.3%	964	1737	1662	520	954	1014
Simulator Attack	99.4%	96.8%	97.9%	811	1380	1445	431	850	878

Comparison of the Attack Success Rate

DeepFake

Replace the face

De-age the face

Replace the head

DeepFake: Deepfacelab

D Extraction

- Face Detection
- Face Alignment
- Face Segmentation

□ Training

- AutoEncoder-based DeepFake
- GAN-based DeepFake

Conversion

- Target Face Generation
- Blending
- Sharpening

(a) Original Donor

(b) Original Target (c) Face Swapped

Training

Conversion

DeepFake: AutoEncoder, Faceswap

DAutoEncoder-based DeepFake

- Two encoder-decoder pairs are used to train on ٠ source and target face images.
- Encoders share parameters to find and learn the ٠ similarity between two faces.
- Source features are connected with target decoder ٠ to **swap face**.

Structure of autoencoder-based DeepFake

The input and output of DeepFake

Cvcle-GAN **Recycle-GAN**

Outline

Defend against Adversaries: Overview

Adversarial defense mainly uses active or passive methods to eliminate the impact of adversarial examples on the model.

DeepFake Detection

D Observation

- most existing face manipulation methods ۲ share a common step:
- blending the altered face into an existing ۲ background image.

□ Face X-ray

- **Do not** rely on knowledge of **artifacts** ٠
- Can be trained without fake images ۲
- Remain effective for unseen face •

manipulation techniques

A real image and its face X-ray

B: face X-ray

DeepFake Detection

Visual results on various facial manipulation methods

Benchmark results in terms of AUC, AP and EER

Model	Training dataset	Test dataset									
Woder			DFD			DFDC		(Celeb-Dl	F	
		AUC	AP	EER	AUC	AP	EER	AUC	AP	EER	
Xception [36]	FF++	87.86	78.82	21.49	48.98	50.83	50.45	36.19	50.07	59.64	
Face X-ray	BI	93.47	87.89	12.72	71.15	73.52	32.62	74.76	68.99	31.16	
Face X-ray	FF++ and BI	95.40	93.34	8.37	80.92	72.65	27.54	80.58	73.33	26.70	

Li, Lingzhi, et al. "Face x-ray for more general face forgery detection." ICCV. 2020.

Image Compression

ComDefend

End-to-end image compression model to defend adversarial examples

a compression convolutional neural network (ComCNN)

+

a reconstruction convolutional neural network (RecCNN).

Network	Defense	Clean	FGSM	IFGSM(3/5)	MI-FGSM	Deepfool	C&W
IncResV2	Normal	86%	34%/30%	10%/5%	13%/7%	13%/11%	0%/0%
	HGD	54%	47%/48%	42%/42%	46%/44%	48%/48%	48%/48%
	Our method	77%	62%/61%	51%/42%	50% /40%	60%/60%	61%/63%
	Normal	83%	20%/18%	57%/49%	57%/50%	12%/11%	0%/0%
IncV3	HGD	70%	60%/60%	62%/ 61%	62%/62%	60%/60%	59%/59%
	Our method	74%	62%/61%	64% /60%	69%/64%	60%/60%	60%/60%
	Normal	88%	28%/26%	6%/1%	4%/1%	17%/15%	0%/0%
IncV4	HGD	64%	56%/56%	51%/50%	57%/52%	59%/59%	59%/59%
	Our method	74%	58%/56%	50%/46%	50%/40%	60%/60%	61%/60%

Table 8. Comparison results with HGD on ImageNet ($L_{\infty} = 8/16$)

Table 5.	THE RESULT	OF COMPARISONS	WITH OTHER DE	FENSIVE METHODS	(CIFAR-10.	$L_{\infty} = 2/8/16$
	TTTTTTTTTT	01 001.11.11001.0				

Netwo	k Defens	Defensive method		FGSM	BIM	DeepFool	C&W
		Normal	92%/92%/92%	39%/20%/18%	08%/00%/00%	21%/01%/01%	17%/00%/00%
		Adversarial FGSM	91%/91%/91%	88%/91%/91%	24%/07%/00%	45%/00%/00%	20%/00%/07%
	In training time	Adversarial BIM	87%/87%/87%	80%/52%/34%	74%/32%/06%	79%/48%/25%	76%/42%/08%
Pasnet	50	Label Smoothing	92%/92%/92%	73%/54%/28%	59%/08%/01%	56%/20%/10%	30%/02%/02%
Keshet.		Proposed method	92%/92%/92%	89%/89%/87%	84%/47%/40%	90%/90%/90%	91%/90%/90%
		Feature Squeezing	84%/84%/84%	31%/20%/18%	13%/00%/00%	75%/75%/75%	78%/78%/78%
	In test time	PiexlDefend	85%/85%/88%	73%/46%/24%	71%/ 46% /25%	80%/80%/80%	78%/78%/78%
		Proposed method	91%/91%/91%	86%/84%/83%	78%/41%/34%	88%/88%/88%	89%/87%/87%

Table 6.	5. THE RESULT OF COMPARISONS WITH OTHER DE	FENSIVE METHODS (Fashion-mnist L_{∞}	= 8/25)
			/

Network	Defensive Method	Clean	FGSM	BIM	DeepFool	C&W
	Normal	93%/93%	38%/24%	00%/00%	06%/06%	00%/00%
	Adversarial FGSM	93%/93%	85%/85%	51%/00%	63%/07%	67%/21%
	Adversarial BIM	92%/91%	84%/79%	76%/63%	82%/72%	81%/70%
Resnet50	Label Smoothing	93%/83%	73%/45%	16%/00%	29%/06%	33%/14%
	Feature Squeezing	84%/84%	70%/28%	56%/25%	83%/83%	83%/83%
	PiexlDefend	89%/89%	87%/82%	85%/83%	88%/88%	88%/88%
	Proposed method	93%/93%	89%/89%	70%/60%	90%/89%	88%/89%

The classification accuracy of ResNet-50 on adversarial images produced by four attacks using the proposed method at the test time and at training and test time. The dotted line represents the accuracy of the ResNet-50 model on adversarial images without any defense.

102

Gradient Obfuscation

Observation

• Adversarial examples mainly lie in the low probability regions of the training distribution

D PixelDefend

- Generative models can be used for detecting adversarially perturbed images based on the probabilities of all training images
- Further purify input images, by making small changes to them in order to move them back towards the training distribution

Gradient Obfuscation

An example of how purification works

Pixel Defend results on CIFAR-10

NETWORK	TRAINING TECHNIQUE	CLEAN	RAND	FGSM	BIM	DEEP FOOL	CW	STRONGEST ATTACK
ResNet	Normal	92/92/92	92/87/76	33/15/11	10/00/00	12/06/06	07/00/00	07/00/00
VGG	Normal	89/89/89	89/88/80	60/46/30	44/02/00	57/25/11	37/00/00	37/00/00
	Adversarial FGSM	91/91/91	90/88/84	88/91/91	24/07/00	45/00/00	20/00/07	20/00/00
	Adversarial BIM	87/87/87	87/87/86	80/52/34	74/32/06	79/48/25	76/42/08	74/32/06
D	Label Smoothing	92/92/92	91/88/77	73/54/28	59/08/01	56/20/10	30/02/02	30/02/01
Residet	Feature Squeezing	84/84/84	83/82/76	31/20/18	13/00/00	75/75/75	78/78/78	13/00/00
	Adversarial FGSM + Feature Squeezing	86/86/86	85/84/81	73/67/55	55/02/00	85/85/85	83/83/83	55/02/00
ResNet	Normal + PixelDefend	85/85/88	82/83/84	73/46/24	71/46/25	80/80/80	78/78/78	71/46/24
VGG	Normal + PixelDefend	82/82/82	82/82/84	80/62/52	80/61/48	81/76/76	81/79/79	80/61/48
ResNet	Adversarial FGSM + PixelDefend	88/88/86	86/86/87	81/68/67	81 /69/ 56	85/85/85	84/84/84	81/69/56
	Adversarial FGSM + Adaptive PixelDefend	90/90/90	86/87/ 87	81/70/67	81 / 70 / 56	82/81/82	81/80/81	81/70/56

DObfuscated gradients

a phenomenon exhibited by certain **defenses** that makes standard **gradient-based** methods fail to generate adversarial examples.

Defense	Dataset	Distance	Accuracy
Buckman et al. (2018)	CIFAR	$0.031(\ell_{\infty})$	0%*
Ma et al. (2018)	CIFAR	$0.031(\ell_{\infty})$	5%
Guo et al. (2018)	ImageNet	$0.005 (\ell_2)$	0%*
Dhillon et al. (2018)	CIFAR	$0.031(\ell_{\infty})$	0%
Xie et al. (2018)	ImageNet	$0.031(\ell_{\infty})$	0%*
Song et al. (2018)	CIFAR	$0.031(\ell_{\infty})$	9%*
Samangouei et al.	MNIST	$0.005 (\ell_2)$	55% **
(2018)			
Madry et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	47%
Na et al. (2018)	CIFAR	$0.015(\ell_{\infty})$	15%

Defense techniques cause **obfuscated gradients** and are vulnerable to their attacks.

They believe **adversarial training** approach does not cause **obfuscated gradients**.

D An Optimization View on Adversarial Robustness

Adversarial Training: \min_{θ}

$$\min_{\theta} \left(\frac{1}{D} \sum_{(x,y)\in D} \max_{\delta \in \Delta(x)} L(f(x+\delta), y) \right)$$

saddle point problem

106

The composition of an inner maximization problem and an outer minimization problem

Universally Robust Networks

capacity is crucial for robustness, as well as for the ability to successfully train against strong adversaries

Adversarial Training

Gradient masking in single-step adversarial training

Ensemble Adversarial Training: augments training data with perturbations transferred from other models Domain Adaptation with multiple sources

Theorem 1 (informal). Let $h^* \in \mathcal{H}$ be a model learned with Ensemble Adversarial Training and static black-box adversaries $\mathcal{A}_1, \ldots, \mathcal{A}_k$. Then, if h^* is robust against the black-box adversaries $\mathcal{A}_1, \ldots, \mathcal{A}_k$ used at training time, then h^* has bounded error on attacks from a future black-box adversary \mathcal{A}^* , if \mathcal{A}^* is not "much stronger", on average, than the static adversaries $\mathcal{A}_1, \ldots, \mathcal{A}_k$.

107

Adversarial Detection

- branch off the main network at some layer
- output the probability of the input being adversarial

binary detector network, inputs intermediate feature representations, and discriminates between samples from the original data set and adversarial examples

the worst case: a dynamic adversary adapting to the detector $x_0^{\text{adv}} = x; \ x_{n+1}^{\text{adv}} = \text{Clip}_x^{\varepsilon} \left\{ x_n^{\text{adv}} + \alpha \left[(1 - \sigma) \operatorname{sgn}(\nabla_x J_{\text{cls}}(x_n^{\text{adv}}, y_{\text{true}}(x))) + \sigma \operatorname{sgn}(\nabla_x J_{\text{det}}(x_n^{\text{adv}}, 1)) \right] \right\}$

Adversarial Detection

Detectability versus classification accuracy of a dynamic adversary

A dynamic detector is considerably more robust (more than 70%)

Denoising and Restructure

C Key Observations of image features

- clean image: appear to focus primarily on semantically informative content
- adversarial image: activated across semantically irrelevant regions as well

Solutions

 New convolutional network architectures equipped with building blocks designed to denoise feature maps

$$y_i = rac{1}{\mathcal{C}(x)} \sum_{\forall j \in \mathcal{L}} f(x_i, x_j) \cdot x_j,$$

adversarial

Denoising and Restructure

Adversarial images and their feature maps before(left) and after(right) the denoising operation

Defense against black-box attacks on ImageNet

model	accuracy (%)
CAAD 2017 winner	0.04
CAAD 2017 winner, under 3 attackers	13.4
ours, R-152 baseline	43.1
+4 denoise: null $(1 \times 1 \text{ only})$	44.1
+4 denoise: non-local, dot product	46.2
+4 denoise: non-local, Gaussian	46.4
+all denoise: non-local, Gaussian	49.5

Defense against white-box attacks on ImageNet

Outline

Understand the Model Robustness

Adversarial Examples are not Bugs, they are Features

Adversarial examples can be directly attributed to the presence of non-robust features

Disentangle features into combinations of robust/non-robust features

Construct a dataset which appears mislabeled to humans

D Non-robust features

features that are highly predictive, yet brittle and incomprehensible to humans

Random samples from the variants of the CIFAR-10

Standard and robust accuracy on the CIFAR-10 test set

D Multi-domain hypothesis

Different types of adversarial perturbations are drawn from different domains.

116

Liu, Tang, Liu et al., "TOWARDS DEFENDING MULTIPLE ADVERSARIAL PERTURBATIONS VIA GATED BATCH NORMALIZATION", Work in progress.

Gated Batch Normalization (GBN)

A building block for deep neural networks that improves robustness against

multiple perturbation types.

(a) the results of addingGBN to different singlelayers.(b) the results of adding

117

GBN to top-m layers

	Vanilla	AVG	MAX	MSD	MN	MBN	GBN (ours)	_
ℓ_1 attacks ℓ_2 attacks ℓ_∞ attacks All attacks Clean accuracy	0.0% 0.0% 0.0% 0.0%	44.9% 59.1% 29.2% 28.2%	33.3% 56.0% 25.1% 24.9%	43.7% 58.9% 38.0% 37.9% 70.1%	39.8% 30.0% 13.2% 13.0%	44.9% 20.8% 40.1% 20.7%	57.7% 68.9% 49.9% 48.7%	Model robustness on CIFAR-10 datasets
Clean accuracy	89.1%	80.6%	//.0%	/9.1%	82.3%	/9.4%	80.7%	

Liu, Tang, Liu et al., "TOWARDS DEFENDING MULTIPLE ADVERSARIAL PERTURBATIONS VIA GATED BATCH NORMALIZATION", Work in progress.

Non-linearity and linearity of DNNs

- Early attempts at explaining this phenomenon focused on nonlinearity and overfitting
- the linearity hypothesis. $m{w}^{ op} ilde{m{x}} = m{w}^{ op} m{x} + m{w}^{ op} m{\eta}$

The adversarial perturbation causes the activation to grow

simple linear model can have adversarial examples if its input has sufficient dimensionality.

Non-linearity and linearity of DNNs

- Challenge the **linearity hypothesis** by analyzing adversarial examples using several CNN architectures for ImageNet.
- CNNs act locally linearly to changes in the image regions with objects
 recognized by the CNN, and in other regions the CNN may act non-linearly.

Example of different CNNs' minimum perturbations

Distillation Guided Routing

identify the critical data routing paths for each input sample.

 Only small fractions of critical nodes being deactivated will lead severe performance degradation. The intra-layer routing nodes of higher level layers have stronger correspondence to category semantic concepts.

The accuracy degradation

Different clustering consistency evaluation

DActivation Promotion and Suppression

better understand the roles of **adversarial perturbations** and provide **visual explanations** from pixel, image and network perspectives.

Illustration on sensitivity measure

Explanation of adversarial perturbations

There exists a tight connection between the sensitivity of hidden

units of CNNs and their interpretability on semantic concepts.

Interpreting adversarial perturbations

DNeuron sensitivity

- Explain adversarial robustness from a new perspective of **neuron sensitivity**
- Measured by neuron behavior variation intensity against benign and adversarial examples.

The framework of computing Neuron Sensitivity and selecting Sensitive Neuron

Zhang, Liu, Liu, and Xu, "Interpreting and Improving Adversarial Robustness of Deep Neural Networks with Neuron Sensitivity". IEEE TIP, 2020

□Insightful clues for model robustness and weakness

- Sensitive Neurons Contribute Most to Model Misclassification in the Adversarial Setting
- Adversarial Attacks Exploit Sensitive Neurons Differently at Different Layers
- Sensitive Neurons Convey Strong Semantic Information
- Adversarial Training Builds Robust Models by Reducing Neuron Sensitivities
- Training Adversarially Robust Models via Sensitive Neurons Stabilizing

The Spearman's Rank Correlation Coefficient and the Levenshtein Similarity

Image segmentation results of sensitive neurons

DNeuron-wise critical attacking route

A gradient-based influence propagation strategy to get critical attacking neurons

The framework of computing instance-level critical attacking routes and model-level critical attacking route

127

□ Understanding model behaviors via critical attacking routes

- Adversarial perturbations are propagated and amplified via attacking route
- Attacking route conveys strong semantic information

Grad-CAM of neurons on (and not on) critical attacking route of the last conv layer using pretrained VGG16 on ImageNet

- ImageNet trained CNNs are strongly biased towards recognizing textures rather than shapes
- in stark contrast to **human** behavioral evidence and reveals fundamentally **different classification** strategies.

a) Texture	image	
81.4%	Indian e	lephant
10.3%	indri	
8.2%	black sw	an

(b) Content image
71.1% tabby cat
17.3% grey fox
3.3% Siamese cat

(c) Texture-shape cue conflict
 63.9% Indian elephant
 26.4% indri
 9.6% black swan

Classification of a texture image, a normal image of a cat, and an image with a texture-shape cue conflict

Geirhos et al., "IMAGENET-TRAINED CNNS ARE BIASED TOWARDS TEXTURE; INCREASING SHAPE BIAS IMPROVES ACCURACY AND ROBUSTNESS", ICLR, 2019.

Stylized-ImageNet (a stylized version of ImageNet) provide a much better fit for **human behavioral** performance in the well-controlled psychophysical lab setting.

architecture	$IN {\rightarrow} IN$	$IN \rightarrow SIN$	$SIN \rightarrow SIN$	$SIN{\rightarrow}IN$
ResNet-50	92.9	16.4	79.0	82.6
BagNet-33 (mod. ResNet-50)	86.4	4.2	48.9	53.0
BagNet-17 (mod. ResNet-50)	80.3	2.5	29.3	32.6
BagNet-9 (mod. ResNet-50)	70.0	1.4	10.0	10.9

Classification accuracy on parametrically distorted images

CNNs are often biased towards either **texture or shape**, depending \bullet on the training dataset

assigning labels to cue conflict images controls the bias of learned models.

Poncho X

Fur Coat √

The shape-biased model
and the texture-biased
model are good/bad at
classifying different object
categories

	IMAGENET-A	IMAGENET-C	S-IMAGENET	FGSM
	Top-1 Acc. ↑	mCE↓	Top-1 Acc. ↑	Top-1 Acc.↑
ResNet-50	2.0	75.0	7.4	17.1
+ Debiased	3.5 (+1.5)	67.5 (-7.5)	17.4 (+10.0)	27.4 (+10.3)
ResNet-101	5.6	69.8	9.9	23.1
+ Debiased	9.1 (+3.5)	62.2 (-7.6)	22.0 (+12.1)	34.4 (+11.3)
ResNet-152	7.4 12.6 (+5.2)	67.2	11.3	25.2
+ Debiased		58.9 (-8.3)	22.4 (+11.1)	39.6 (+14.4)

The model robustness on ImageNet

Outline

Model Robustness Understanding

Trustworthy AI needs deep understanding to DNNs(Interpretability Theory)

Model Robustness Understanding

Interpretability theory can help to make sure the **safety** of real-world AI applications

- Monitor the status of AI applications
- Analyze AI application bugs
- Expand AI application scenarios

Auto-driving

Unmanned Vehicle

Security

Model Robustness Evaluation

More Challenges in the Life-Cycle of AI models

Adversarial Examples for Deep Learning: Attack, Defense and Robustness

Q&A

Xianglong Liu

July 2021

State Key Lab of Software Development Environment

Beihang University, China

xlliu@buaa.edu.cn

http://www.nlsde.buaa.edu.cn/~xlliu