
© 2009 IBM Corporation

IBM Research

Zhujin Li1, Xianglong Liu1*, Junjie Wu1, and Hao Su2

1Beihang University, Beijing, China
2Stanford University, Stanford, CA, USA

Adaptive Binary Quantization
for Fast Nearest Neighbor Search

http://www.nlsde.buaa.edu.cn/~xlliu

 Introduction

– Nearest Neighbor Search

– Motivation

 Adaptive Binary Quantization

– Formulation

– Optimization

 Experiments

 Conclusion

Outline

 Definition

Given a database 𝑃 = 𝑝𝑖 𝑖=1…𝑛 and a query 𝑞, the nearest neighbor of 𝑞:

𝑝∗ ∈ 𝑃 , such that 𝑑 𝑞, 𝑝∗ ≤ 𝑑(𝑞, 𝑝)

 Solutions

– linear scan

• time and memory consuming

– tree-based: KD-tree, VP-tree, etc.

• divide and conquer

• degenerate to linear scan for high dimensional data

Introduction: Nearest Neighbor Search (1)

3

 Hash based nearest neighbor search

– Locality sensitive hashing [Indyk and Motwani, 1998]: close points in the
original space have similar hash codes

Introduction: Nearest Neighbor Search (2)

4

x1

X x1 x2 x3 x4 x5

h1 0 1 1 0 1

h2 1 0 1 0 1

h1
h2

… … … … … …

hk … … … … …

010… 100… 111… 001… 110…x2

x3

x4

x5

ℎ 𝑥 = 𝑠𝑔𝑛(𝑤𝑇𝑥 + 𝑏)

 Hash based nearest neighbor search

– Compressed storage: binary codes

– Efficient computations: hash table lookup or Hamming distance ranking
based on binary operations

Introduction: Nearest Neighbor Search (3)

5

… …

wk

10/-1

Hashing Hash Table

Bucket Indexed Image

 Linear projection based quantization

Introduction: State-of-the-art Hashing Solutions (1)

6

ITQ: Rotation, CVPR’12

LSH: random PCAH: PCA

AGH: Kernel, ICML’11

Try to capture the data distribution

 Prototype based quantization

– Step 1: find a number of prototypes to represent the data (like clustering)

– Step 2: assign a binary code to the prototype

Introduction: State-of-the-art Hashing Solutions (2)

7

SPH, CVPR’12

each prototype generate a bit
KMH, CVPR’13

each prototype generate multiple bits

∈ {𝟎, 𝟏} with 2 codes ∈ 𝟎, 𝟏 𝒎 with 2𝒎 codes

achieve encouraging performance

 Problems

– make use of the complete binary code set (geometrically forms a hypercube), which
can hardly characterize the real-world data distribution

 Motivation

– a better coding solution only relying on a small subset of binary codes (instead of
the complete set) can largely reduce the quantization loss.

Introduction: Motivation

8

编码空间

𝑑𝑜 𝑥, 𝑦 ≅ 𝑑ℎ(𝑐𝑥 , 𝑐𝑦)

Using the complete binary code set

Using a small subset of binary codes

𝑑𝑜 𝑥, 𝑦 ≅ 𝑑ℎ(𝑐𝑥 , 𝑐𝑦)

 Introduction

– Nearest Neighbor Search

– Motivation

 Adaptive Binary Quantization

– Formulation

– Optimization

 Experiments

 Conclusion

Outline

10

 Goal:

– characterize the inherent data relations, and maintain the affinities
between samples in the code space (i.e., Hamming space).

 Basic idea: space alignment

– jointly find the discriminative prototypes and their associated binary
codes that can align the Hamming space to the original one

Adaptive Binary Quantization: Formulation (1)

𝑑𝑜 𝑥𝑖 , 𝑥𝑗 ≅ 𝑑ℎ(𝑦𝑖 , 𝑦𝑗)

the original space the Hamming space

𝑥𝑖

𝑥𝑗

𝑦𝑖
𝑦𝑗

11

 Notations

– The training data set 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑁 ∈ ℝ𝑑×𝑛

– The code matrix 𝑌 = [𝑦1, 𝑦2, … , 𝑦𝑛] ∈ {−1,1}𝑏×𝑛

– The prototype set 𝑃 = {𝑝𝑘|𝑝𝑘 ∈ ℝ𝑑×𝑛}

– The codebook 𝐶 = {𝑐𝑘|𝑐𝑘 ∈ −1, 1 𝑏}

 A prototype based hashing

– learn a hash function ℎ(𝑥) that can map each
𝑥 to 𝑦

Adaptive Binary Quantization: Formulation (2)

(𝑝1, 𝑐1)

𝑥

(𝑝2, 𝑐2) (𝑝3, 𝑐3)

𝑦 = 𝑐1

ℎ(𝑥) = 𝑐𝑖∗ 𝑥 𝑖∗ 𝑥 = argmin
k

𝑑𝑜 𝑥, 𝑝𝑘

12

 Space Alignment

– concentrate on the distance consistence so that codes in Hamming space
will be aligned with the original data distribution

• global distribution: the prototypes capture the data distribution

• neighbor structure: data belonging to the same prototype share the same
code

– Quantization loss

• 𝑑ℎ 𝑦𝑖 , 𝑦𝑗 =
1

2
𝑦𝑖 − 𝑦𝑗 is the square root of the Hamming distance

Adaptive Binary Quantization: Formulation (3)

𝑸(𝑌, 𝑋) =
1

𝑛2
σ𝑖,𝑗=1
𝑛 𝜆𝑑𝑜 𝑥𝑖 , 𝑥𝑗 − 𝑑ℎ 𝑦𝑖 , 𝑦𝑗

2

𝑑𝑜 𝑥𝑖 , 𝑥𝑗 ≈ 𝑑𝑜 𝑥𝑖 , 𝑝i∗ xj

𝑸 (𝑃, 𝐶, 𝑖∗(𝑋)) =

𝑖=1

𝑛

𝑘=1

𝑃
𝑤𝑘

𝑛2
𝜆𝑑𝑜 𝑥𝑖 , 𝑥𝑗 − 𝑑ℎ 𝑐i∗ xj 𝑖

, 𝑐j∗ xj

2

13

 Space Alignment

 Alternating Optimization

– 1. Adaptive Coding

fixing 𝑃 and 𝑖∗(𝑋), optimize 𝐶

– 2. Prototype Update

fixing 𝐶 and 𝑖∗(𝑋), optimize 𝑃

– 3. Distribution Update

fixing 𝑃 and 𝐶, optimize 𝑖∗(𝑋)

Adaptive Binary Quantization: Optimization (1)

min
𝑃,𝐶,𝑖∗(𝑋)

𝑸 (𝑃, 𝐶, 𝑖∗(𝑋))

𝑠. 𝑡. 𝑐𝑘 ∈ −1, 1 𝑏 ; 𝑐𝑘
𝑇𝑐𝑙 ≠ 𝑏, 𝑙 ≠ 𝑘

14

 Adaptive Coding

– With the prototype 𝑃 and the assignment index 𝑖∗(𝑋), from 2𝑏 codes
find a subset most consistent with the prototypes.

Adaptive Binary Quantization: Optimization (2)

001

011

000

？

011

001

000

010

100

101

110

111

Codebook

101𝑝1

𝑝2

𝑝3

𝑝4

𝑝5

𝑝6

min
𝑐𝑘∈ ሚ𝐶

𝑖∗ 𝑥𝑖 =𝑘

𝑘′≠𝑘

𝑤𝑘′ 𝜆𝑑𝑜 𝑥𝑖 , 𝑝𝑘′ − 𝑑ℎ 𝑐𝑘 , 𝑐𝑘′
2+

𝑖∗ 𝑥𝑖 ≠𝑘

𝑤𝑘 𝜆𝑑𝑜 𝑥𝑖 , 𝑝𝑘 − 𝑑ℎ 𝑐𝑖∗ 𝑥 , 𝑐𝑘
2

 Prototype Update

– With the codebook 𝐶 and the assignment index 𝑖∗(𝑋), find the
prototypes 𝑃 that can simultaneously capture the data distribution and
align with the geometric structure in the code space

– prototypes 𝑃 might be shrunk, and thus gradually adapt the binary codes
to the data distribution

 Distribution Update

– an assignment updating step to capture the distribution variation

Adaptive Binary Quantization: Optimization (3)

min
𝑘′≤ 𝐶

𝑘=1

𝐶

𝑤𝑘 𝜆𝑑𝑜 𝑥𝑖 , 𝑝𝑘 − 𝑑ℎ 𝑐𝑘′ , 𝑐𝑘
2 𝑝𝑘 =

1

𝑤𝑘

𝑖∗ 𝑥𝑖 =𝑘

𝑥𝑖

𝑖∗ 𝑥𝑖 = arg min
𝑘≤ 𝑃

𝑑𝑜 𝑥𝑖 , 𝑝𝑘

 Initialization

– k-means clustering to initialize the prototypes 𝑃

– 2𝑏 prototypes and codes to initialize scale parameter 𝜆

 Product Quantization

– Generating long (𝑏∗) hash codes by

(1) dividing the original space into 𝑀 = 𝑏∗/𝑏 subspaces

(2) adaptive binary quantization in each subspace

Adaptive Binary Quantization: Algorithm Details (1)

16

 Complexity

– Training: for 𝑛 training samples of dimension 𝑑, to generate 𝑏∗ binary
codes, the complexity 𝑂(22𝑏𝑡 ∙ 𝑛𝑑), almost linear to 𝑛 (𝑏 ≤ 8 and #
iteration 𝑡 ≤ 20)

– Testing: 𝑂(|𝑃|𝑑), close to the linear projection based hashing

Adaptive Binary Quantization: Algorithm Details (2)

17

0 10 20

0.15

0.2

0.25

0.3

0.35

0.4

iterations

0 10 20

50

100

150

200

250

iterations

0 10 20
1

2

3

4

5

6

iterations

Experiments

 Datasets

– SIFT-1M: 1 million 128-D SIFT; GIST-1M: 1 million 960-D GIST

– SIFT-20M: 20 millions 128-D SIFT; Tiny-80M: 80 millions 384-D GIST

 Baselines:

– Projection based: LSH, SH, KLSH, AGH, ITQ, KBE

– Prototype based: SPH, KMH

 Setting:

– 50,000 and 100,000 training samples and 3,000 queries on each set

– The groundtruth for each query is defined as the top 1,000 nearest
neighbors on SIFT-1M, GIST-1M and SIFT-20M, and 5,000 on Tiny-80M
based on Euclidean distances

– Average performance of 10 independent runs

18

Experiments: precision performance

19

Experiments: recall performance

20

Experiments: effect of #groundtruth

21

 One observation: in prototype based hashing there might exist
a better coding solution that only utilizes a small subset of
binary codes instead of the complete set

 An adaptive binary quantization method: jointly pursues a set
of prototypes in the original space and a subset of binary
codes in the Hamming space.

 Good properties: enjoys fast computation and the capability of
generating long hash codes in product space, with
discriminative power for nearest neighbor search.

 Encouraging performance: significantly outperforms existing
methods on several large datasets, encouraging the further
study on the effective binary quantization

Conclusion

22

 Easy to extend for distributed system

– Distributed (map-reduce) + Parallel (PQ)

Future work

23

Thank you!
http://www.nlsde.buaa.edu.cn/~xlliu

http://www.buaa.edu.cn/

