Hash Bit Selection: a Unified Solution for Selection Problems in Hashing

Xianglong Liu'

Junfeng He#*

Bo Lang' Shih-Fu Chang?

TState Key Lab of Software Development Environment, Beihang University, Beijing, China
tDepartment of Electrical Engineering, Columbia University, New York, NY, USA
*Facebook, 1601 Willow Rd, Menlo Park, CA, USA

{x1liu, langbo}@nlsde.buaa.edu.cn

Abstract

Recent years have witnessed the active development of
hashing techniques for nearest neighbor search over big
datasets. However, to apply hashing techniques success-
fully, there are several important issues remaining open in
selecting features, hashing algorithms, parameter settings,
kernels, etc. In this work, we unify all these selection
problems into a hash bit selection framework, i.e., selecting
the most informative hash bits from a pool of candidate
bits generated by different types of hashing methods using
different feature spaces and/or parameter settings, etc. We
represent the bit pool as a vertex- and edge-weighted graph
with the candidate bits as vertices. The vertex weight repre-
sents the bit quality in terms of similarity preservation, and
the edge weight reflects independence (non-redundancy)
between bits. Then we formulate the bit selection problem
as quadratic programming on the graph, and solve it
efficiently by replicator dynamics. Moreover, a theoretical
study is provided to reveal a very interesting insight: the
selected bits actually are the normalized dominant set of
the candidate bit graph. We conducted extensive large-
scale experiments for three important application scenarios
of hash techniques, i.e., hashing with multiple features,
multiple hashing algorithms, and multiple bit hashing. We
demonstrate that our bit selection approach can achieve
superior performance over both naive selection methods
and state-of-the-art hashing methods under each scenario,
with significant accuracy gains ranging from 10% to 50%
relatively.

1. Introduction

The explosive growth of the vision data motivates the
recent studies on hashing based nearest neighbor search.
Locality-Sensitive Hashing (LSH) [3] as one of the most
well-known methods was first proposed to establish the
hashing paradigm. It produces binary codes by randomly

jh2700@columbia.edu

sfchang@ee.columbia.edu

projecting data and thresholding the projections, and can
achieve fast search in constant or sub-linear time. To
guarantee the performance, LSH embeds similar data in
original similarity metrics like /,-norm (p € (0,2]) into
similar codes in Hamming space. However, long LSH
codes are often desired to achieve a satisfactory perfor-
mance, since its hashing functions are independently and
randomly generated. To pursue compact, yet informative
binary codes, various types of hashing methods have been
proposed following LSH, such as unsupervised [4,6], (semi-
)supervised [16,20], kernelized [10], spherical [7], multiple
features [18], and multiple bits [11, 14].

Despite the aforementioned progress, it still requires lots
of effort to design or tailor a hashing method that can work
well for each specific data set and query scenario, partially
due to the varying difficulty of nearest neighbor search as
revealed in the theoretical analysis in [S]. Inspired by the
well-known feature selection problem that aims at selecting
the optimal subset of features from an existing feature pool,
an analogous question is whether we can directly choose the
most desirable subset of hash bits from different bit sources,
targeting the specific scenario. This brings us the so-called
bit selection problem, which aims at selecting good bits
from a pool of hash bits generated by different hashing
algorithms with varied settings, different feature spaces, etc.
The bit selection process is compatible with any hashing
algorithm (linear, kernelized, spherical, multi-bit, etc.) with
different parameter settings or feature types.

The bit selection serves as a unified framework for
various scenarios including (but not limited to): (1) hash-
ing with multiple features: since visual data are often
described by different visual descriptors, hashing with mul-
tiple features can incorporate different representations to
explore the informative hashing functions. Bit selection
efficiently tackles the problem by picking bits produced by
different hashing algorithm with different features, instead
of solving the hard optimization problem involving multiple
features [18]; (2) multiple hashing methods: with features
of a low dimension it usually fails to generate long hash

scenarios bits

Feature 1 H Hashing 1 }—>{ Parameter 1 'ﬁ Y111

| Feature 1 H Hashi

1 H Param;eter 13y ‘9

| Feature 1 H H " j }—){ Paran;eterl ‘% Y1j1

| Feature 1 H Hashing j H Param:eterlll- ‘% :ylﬂlj

[Featurei || Hashingj || Parameter1 |> '}’ijl a

| Feature i I—)‘ Hashing j }—>‘ Param.eterlij b s}’ijli,-

vertex- and edge-weighted graph

Y111y, %

selected bits

Figure 1. The proposed unified bit selection using normalized dominant set.

codes using PCA [4, 19] and landmark [14] based hashing
methods. Moreover sometimes the bit quality decreases
dramatically [19, 21]. By building a large bit pool using
multiple hashing methods, bit selection elegantly and com-
plementarily chooses a desired number of heterogeneous
bits, and hopefully achieves major performance gains over
state-of-the-art hashing methods; (3) multiple bit hash-
ing: several works have attempted to improve the hashing
performance by generating multiple bits per projection
[11,14]. Since the quality of bits varies, especially using
the hierarchical hashing process, it is reasonable that we can
select the most informative bits from them.

In the literature, not much work has been reported re-
garding the bit selection problem except [15], which greed-
ily selects bits preserving maximum margins under certain
metrics. However, sequentially estimating the averaged
margin leads to a high computational cost. Furthermore, the
independence between bits, which can benefit the compact
hash codes [6,21], is not considered explicitly.

In this paper, we propose a unified bit selection method
that simultaneously considers both similarity preservation
and independence between bits to guarantee good hashing
performance. Our paper has the following contributions:

1. We first propose a generic bit selection that unifies
various important scenarios (e.g., hashing with mul-
tiple features, multiple hashing methods, multiple bit
hashing, etc.) using hashing techniques. The bit
selection supports different types of hashing methods
using different feature spaces, parameter settings, etc.

2. We consider two important criteria carefully tailored
for hashing performance, i.e., similarity preservation
and independence between bits, and represent the bit
pool as a vertex- and edge-weighted graph. The
bit selection problem turns into the discovery of the
normalized dominant set in the bit graph.

3. We formulate the problem as a quadratic program-
ming, and solve it efficiently using the replicator
dynamics. A theoretical study shows the nature of the
solution based on the normalized dominant set.

Figure 1 demonstrates the proposed bit selection method
generic for a wide range of scenarios. Our extensive empir-
ical study on several large-scale benchmarks highlights the
benefits of our method under various useful scenarios, with
significant performance gains over several naive selection
methods and state-of-the-art hashing methods.

2. Bit Selection
2.1. Problem Definition

Suppose there is a large pool of over-complete hash bits
for n data points Z = {z;,i = 1,...,n}, where z; is
encoded by L bits generated by various hashing methods
with different features, parameter settings, etc. Denoting
the L types of bits with index set V' = {1, ..., L}, the i-th
bits (z = 1,..., L) for all n points can be represented as
yi € {—1,1}1*". The goal of bit selection is to exploit
a small bit subset (of size) S C V, which not only
reduces the search and storage cost with short lengths, but
also achieves good performance with strong discriminative
power.

2.2. Selection Criteria

In the literature, two properties have been proved criti-
cal for compact hash codes: similarity preservation and
independence [6,21]. Similarity preservation means that
the embedded binary codes can retain the original distances
in Hamming space, while keeping bits independent avoids
redundancy among them and leads to short, yet discrimina-
tive codes. Moreover, as discussed in [6] the independence
also helps to achieve large entropy among bits and thus
allowing for fast search speeds. Therefore intuitively bits
that are not only capable of preserving similarity but also
mutually independent should be selected. Note that besides
the proposed selection criteria, there are other options that
can be flexibly tailored for different objectives.

2.2.1 Similarity Preservation

To obtain good hash codes guaranteeing search accuracy,
hashing methods should preserve similarities between data
points, namely, similar points are supposed to have similar
hash codes with small hamming distances [6, 21]. The
similarity can be adaptively tailored for different objectives,
eg., for {5 (Euclidean) similarity preservation of LSH we
can define it based on /5 neighbors; while for hashing
with multiple features, similarity based on label consistency
might be more appropriate.

In our paper, we give a typical definition of the similar-
ities S € R™*™, whose entry S;; is the similarity between
z; and z;, considering whether z; belongs to the nearest
neighbor set N (z;) of z;:

Sij = { exp (_HZ;%HQ); z; € N(z;) (1)

0, otherwise.

Then the similarity preservation for ¢-th bit, based on the
spectral embedding loss [21], can be defined as:

mi = exp (—vyily]),)

where the parameter v > 0, and £ = diag(S1) — S is the

Laplacian matrix.

2.2.2 Mutual Independence

Previous research shows that balance and independence
of hashing functions are important for generating compact
binary codes [21]. [6] argued that minimizing mutual in-
formation criterion provides the most compact and least
redundant hash code. However, considering higher-order
independence among more than two hash bits hardly im-
proves the search quality [7]. Therefore, we approximately
measure the independence using pair-wise relationships
between hash bits.

Suppose the distribution for i-th bit is p(b;),b; €
{—1,1}, and the joint distribution for i-th and j-th bits is
p(bi, b;), then the independence between i-th and j-th bits
based on their mutual information is defined with a A > 0:

Db
R B

Q5 = €Xp

Note that a;; = aj;, which means matrix A = (aij) is
symmetric. Moreover since each bit is self-dependent, all
the elements on the main diagonal of A are zeros.

3. Formulation and Optimization

In this section, we intuitively formulate the bit selection
problem as a quadratic programming with binary con-
straints, and then propose an efficient solution by relaxing
the discrete constraints.

3.1. Formulation

We want to select bits that not only preserve the simi-
larity of data points, but also are uncorrelated. Formally,
with an affinity matrix A incorporating both bit similarity
preservation and their independence, the problem of finding
a good subset of size [from L bits can be formulated as:

max %XTAX

st. xe) @

where
Q= {x e {0, 1}L xlo =1} 5)

In the above formulation, the objective function %folx
measures the cohesiveness among the selected bits indicat-
ed by the binary vector x, where if z; (¢+ = 1,2,...,L)
is 1, the ¢-th bit is selected; otherwise, it is rejected. The
optimal x* should maximize the cohesiveness among its
corresponding bit subset of desired size .

The affinity matrix A, judging the cohesiveness between
bits, should be non-negative, symmetric, and monotonic
with respect to both bit similarity preservation and their
independence. Specifically, for any two bits 7 and j in V/,
Az] >0, AU = A],, and Aza should be monotonically
increasing with respect to m;, 7; and a;;, due to the fact
that in the desired bit subset any bit strongly connects to
the others in terms of similarity preservation and mutual
independence. Therefore, a possible definition is

A = TIATL, (6)

where II = diag(w). In Section 4, we will disclose the
physical meaning of the definition.

3.2. Optimization

The optimization of problem (4) is quite difficult due
to the discrete constraints on x. However, motivated by
previous research on subset selection [12, 17], it can be
approximately solved by relaxing the binary x to a non-
negative real-valued one. Each element of x expresses
the importance of association with the desired bit subset.
Therefore, if define the support of x as o(x) = {i € V :
x; # 0}, then the desired bit subset corresponds to the
elements in the support with largest values. This turns to
a quadratic programming with continuous constraints on X:

max %XTAX

s.t. x €A @
where
A:{xeRL:xZOanlex:l} 8)

with A defined in (6).
A straightforward and powerful way to find (local) solu-
tions of a quadratic programming problem is the so-called

Algorithm 1 Bit Selection.
1: Initialize S =0,V = {1,...,L};
2: while |S| <ldo
3: Find the support o of local optima x* by solving
problem (7) with respect to bits in V;

4: if|SUo| > then

5: Find 6 C o containing [— | S| vertices with largest
scores X3 ;

6: Terminate with S = S U &.

7: else

8: Update S = SUo, V=V \o.

9: endif

10: end while
11: Return bits corresponding to S.

replicator dynamics [12, 17], arising in evolutionary game
theory. Given an initialization of x(0) (we use 11), the
iteration can be performed efficiently in the following form:

(Ax(t)):

zi(t+1) :xi(t)m,

—1,...,L. 9

Under these dynamics, the simplex A is invariant. More-
over, it has been proven that with symmetric A whose
entries are nonnegative, the objective function will strictly
increase, and its asymptotically stable points correspond to
strict local solutions [12].

Usually we can get [bits by solving (7) once in real-
world situations where | < L. However, it is possible that
|o(x*)| < ! happens. An effective strategy in Algorithm 1
is to iteratively solve similar problems to (7) with respect to
the remaining bit set by removing bits already selected in
the previous iteration. The algorithm is feasible for large-
scale problems, since A can be sparse, and efficient methods
like graph shift [12] can be adopted for fast computation.

4. Theoretic Analysis

We have presented a simple but efficient algorithm for
bit selection considering both similarity preservation and
independence. Next, we give a theoretic explanation of our
intuition with an concept named normalized dominant set.

4.1. Graph Representation

Motivated by recent research on modelling correlations
based on graph [12, 17], we first represent the pooled bits
as a vertex-weighted and undirected edge-weighted graph:
G = (V,E,A,m), where V = {1,..., L} is the vertex set
corresponding to the L types of pooled bits with weights
7 = [m,...,7]T,and E C V x V is the edge set with
weights A = (a;;). Each a;; : (4, j) € E — Ry, a positive
weight corresponding to the edge between vertex ¢ and j.
The vertex and edge weights correspond to the provided

a3 =5
3 =3 Ty, =3

ws(1) < ws(2) < ws(3)

@5(2) < ws(1) = ws(3)

(a) (b) ©
Figure 2. (a) An illustration of relative connection defined in (10).
The induced vertex weight of vertex ¢ with regard to S = {1, 2, 3}
for two types of graph: (b) Edge-weighted graph [17]: wg(1) =
10 < ws(2) = 16 < ws(3) = 18; (c) Vertex-weighted Edge-

weighted graph: ws(2) = & < ws(1) = 3 =ws(3) = 3.

selection criteria: 7 represents the capabilities of similarity
preservation, and A reflects the independence between bits.

Based on the graph representation, the bit selection can
be regarded as a dense subgraph discovery in the vertex-
and edge-weighted graph GG. The dominant set is proposed
to tackle such a problem in the edge-weighted graph [13,
17]. However, in the literature there are very few works that
uncover the dense subgraph on a vertex- and edge-weighted
graph. In our work, we introduce the concept of normalized
dominant set on such graph for bit selection.

4.2. Normalized Dominant Set

Corresponding to the most desirable bits, the normalized
dominant set should have high vertex and edge weights
inside, i.e., high internal homogeneity. Following prior
successful research on dominant set [12, 17], we start with
an idea that both vertex and edge weights will induce a
discriminative assignment of weights on the vertices, with
respect to the homogeneity among the whole vertex set.

Let S C V be a nonempty subset of vertices and j € S.
We attempt to characterize the induced vertex weights by
measuring the connection from any vertex j € S to i ¢
S. It should take both the internal homogeneity in S and
the vertex weights of j and ¢ into account. Motivated by
the transition rate in Markov Jump [1], we introduce the
external connection from vertex j € Stoi ¢ S':

ST iy
6s(j,1) = —(az = f(S, 1)), (10)
7
where f(S,jli) = ZLI_leESajk is the relative
kes Tk ’

internal homogeneity between j and other vertices in .S with
respect to i. When all elements of 7 are identical, f will
degenerate to the average weight between j and .S, namely
only the edge weights have effect on the homogeneity [17].
The connection strength is determined by both the external
homogeneity (a;; — f(S, j|¢)) and the vertex weight ratio
:—J If 7r; is small compared to ;, vertex j will contribute
less to vertex . See the illustrative example in Figure 2 (a).

Following the idea of [17], we formalize the induced
vertex weight of 4 with regard to S in a recursive way:

, =, if|S] =1
wg(i) =< & . . .

> jes\ iy 9s\(iy (U, Dws\ iy (), otherwise.

1D

The total weight of S is defined to be: W (S) =

> ics ws(i). The induced vertex weight wg (i) serves as a
measure of the relative overall connections between vertex
¢ and the remaining vertices in S. Therefore it can be
naturally regarded as a rank score for each vertex.

Based on the induced vertex weights, we define the
normalized dominant set in a vertex- and edge-weighted
graph, similar to the dominant set in [17]:

Definition 1 A nonempty subset of vertices S C V such
that W(T) > 0 for any nonempty T C S, is said to be
normalized dominant if: (1) wg(i) > 0, forall i € S; (2)
wsyyiy (1) <0, foralli ¢ S.

The first condition of the above definition forces the strong
connections among vertices in the normalized dominant set,
while the second regards external inhomogeneity.

Figure 2 shows an example comparing our induced
vertex weight and that of the dominant set [17]. As we can
see, our induced vertex weights, aggregating both vertex
and edge weights, alter the final rank of vertices, and assign
high scores to vertices with large vertex weights.

4.3. Local Optima of the Quadratic Programming

We establish the intrinsic connections between the nor-
malized dominant set and the local optima of quadratic
programming in (7) by the following theorem.

Theorem 1 If x* is a strict local solution of program (7)
with A = TIAIL, where II = diag(r), then its support
o = o(x) is the normalized dominant set of graph G =
(V,E, A,), provided that w,,(;) (i) # 0 for all i & o.

Here, the if-and-only-if statement holds with the definition
of the weighted characteristic vector [17]. See detailed
proofs in the supplementary material.

Theorem 1 tells that the non-zero elements of the local
optima x* of program (7) form the normalized dominant set
S. Moreover, their values correspond to the induced vertex
weights of vertices in .S, normalized by W (.S). Therefore,
in Algorithm 1 each iteration selects the normalized domi-
nant set from the graph with the remaining bit subset, until
[bits are selected. Note that in (2) when v — 0, A — A,
which means that the normalized dominant set problem,
corresponding to problem (7), degenerates to the dominant
set problem [17].

5. Experiments

In this section we will evaluate the bit selection for
diverse useful scenarios: hashing with multiple features,
mixed multiple hashing methods, and multiple bit hashing.
The proposed bit selection method (NDomSet) will be com-
pared with several naive solutions in terms of metric and
semantic neighbor search on several datasets. The straight-
forward selection method is the random way (Random)
without considering either of the aforementioned proper-
ties. Previous research has attempted to take the similarity
preservation (Greedy) into account using greedy selection
method [15]. To deal with bits correlations, the dominant
set method (DomSet), which is first used to find the most
dense subgraph in the literature [12, 17], can be adopted to
select the most uncorrelated subset. The greedy selection
method and the dominant set respectively consider similar-
ity preservation and independence between bits (the edges
in the graph). As we will show in the experiments, although
greedy selection and dominant set, respectively considering
one property, might obtain a performance gain on certain
datasets, they usually fail because of the ignorance of
the other property. Based on the graph, the proposed
bit selection using normalized dominant set discovers the
good bit subsets by complementarily incorporating both
properties.

In our experiments, a number of state-of-the-arts hash-
ing methods such as Locality Sensitive Hashing (LSH)
[3], PCA-based Hashing (PCAH) and its variation with
random rotation (PCAR) [4], Iterative Quantization (ITQ)
[4], Spherical Hashing (SPH) [7] and Random Maximum
Margin Hashing (RMMH) [9] are involved in bit gen-
eration. These methods covers linear/nonlinear hashing
and random/optimized hashing. To evaluate bit selection
performance for hashing with multiple features, we employ
the recent multiple feature hashing (MFH) proposed in [18]
for comparison. In addition, double bit methods [11, 12] are
employed in the scenario using multiple bit hashing.

5.1. Datasets and Protocol

We conduct experiments on several datasets for both
metric and semantic neighbor search. The former selects
the nearest neighbors according to their distances in metric
space, while the latter treats database points sharing the
same semantic labels as the groundtruth. We give a brief
description of three large-scale datasets that have been
widely used in hashing research:

e GIST-1IM: A set of one million 960-D GIST descrip-
tors [8].

e CIFAR-10': It contains 60K 32 x 32 color images of
10 classes and 6K images in each class.

Uhttp://www.cs.utoronto.ca/~kriz/cifarhtml

o
~
&

——MFH ——MFH
— Random
Greedy
—— DomSet
—— NDomSet

—Random
Greedy

| ——DomsSet

——NDomSet

o
~

0.25

o
w
&

0.2

precision
precision

o
©

0.15

0.1
0

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.
recall recall

(a) P-R @ 32 bits, CIAFR-10 (b) P-R @ 32 bits, NUS-WIDE

Figure 3. Semantic neighbors search performances on CIAFR-10
and NUS-WIDE using multiple features.

6 0.8 1

Table 1. MAP (%) using 32 and 64 bits on CIFAR-10 and NUS-
WIDE.

CIFAR-T0 NUS-WIDE
500 BITS } 32 I 4 % 32 I 4
MEH [18] | 13.4450.00 | 12.7440.04 | 25085037 | 25010037
RANDOM | 13.30:£0.74 | 14.3240.42 | 25.6940.51 | 26.3440.56
GREEDY | 12.1740.42 | 12.9240.41 | 23.9140.37 | 24.1620.36
DOMSET | 11.1940.06 | 11.9740.06 | 24.66+0.49 | 25.66-0.51
NDOMSET | 14.80-£0.34 | 15.6440.35 | 27.1740.23 | 27.74%0.16

o NUS-WIDE: It comprises over 269K images with 81
concept tags, of which we consider 25 most frequent
tags [2].

For each dataset, we respectively construct two subsets:
a training set of 10,000 random samples and a testing set
of 1,000 random samples. The training set is used to
obtain the Laplacian matrix, where 100 nearest neighbors
are considered for each training sample. GIST-IM is
adopted for evaluation on metric neighbor search, whose
groundtruth is defined by the top %5 nearest neighbors
computed by the exhaustive linear scan based on Euclidean
distances, while the remaining two datasets are for semantic
neighbor search.

All experiments are conducted on a workstation with
Intel Xeon CPU E5645@2.40GHz and 24GB memory,
and the results reported in this paper are averaged over 5
runs. For parameter (v and) sensitivity, our experiments
indicate that the proposed bit selection is relatively robust.
Thus we roughly tuned the parameters on a small set, and
all selection baselines share the same parameter settings.

5.2. Results and Discussion
5.2.1 Bit selection with multiple features

An attractive advantage for bit selection is that multiple
features can be adopted to build the bit pool, which can save
lots of effort on designing multi-view hashing algorithms.
We evaluate such performance on CIFAR-10 and NUS-
WIDE in terms of semantic neighbor search. In CIFAR-
10, each image is represented by a 384-D GIST feature and
a 300-D bag of visual words quantized from dense SIFT

features of 8 x 8 patches with a 4 space overlap; while in
NUS-WIDE the provided 128-D wavelet texture and 225-
D block-wise color moments are directly used as features.
On each dataset, 250 hash bits are generated respectively
for each type of feature using LSH, and then these bits are
mixed together to form a 500 bit pool for bit selection.

Baselines. Besides the naive bit selection methods
(Random, Greedy, and DomSet), we also compare our bit
selection to the state-of-the-art multiple feature hashing
method MFH [18], which learns the compact hashing
functions by individually preserving the local structure of
each feature and globally considering that of all features.

The mean average precision (MAP) of bit selection
methods and MFH on both CIFAR-10 and NUS-WIDE
are presented in Table 1. Performances of all methods
improve when using longer hash codes except MFH, and
clearly NDomSet achieves the highest performance in all
cases with remarkable superiority (up to 22.76% perfor-
mance gain on CIFAR-10 and 7.48% on NUS-WIDE over
MFH). The MAP decrease of MFH when using more bits
is partially due to the orthogonal constraint, which has
been observed and discussed in [20]. We also compare
precision-recall (P-R) performances using 32 bits on both
datasets in Figure 3. Greedy performs better than DomSet
on CIFAR-10, which means the similarity preservation is
more desirable than independence for LSH bits generated
from two feature types of CIFAR-10. The opposite case
occurs on NUS-WIDE dataset. However, both selection
methods fail to compete with NDomSet. NDomSet over
LSH bits achieves better performance than both MFH and
other bit selection methods, with the largest areas under the
P-R curves.

5.2.2 Bit selection over multiple hashing

Although most hashing algorithms learn hash bits according
to their heuristical criteria, their solutions usually beyond
the desired or optimal ones due to the problem relax-
ation and complicated scenarios. Our bit selection gives
a generic framework that can gather the most informative
and complementary bits generated by different methods for
specific scenarios, which directly meet the provided criteria
(similarity preservation and independence in our paper) .
Baselines. The learned reconfigurable hashing (LRH)
[15] is the only published work studying bit selection prob-
lem. Similar to Greedy, it heuristically finds bits preserving
maximum margins, but at the cost of high computations.
We first evaluate the bit selection over two basic hashing
methods (LSH and PCAR) respectively on GIST-1M in
terms of /5 metric (Euclidean) neighbor search. Each hash-
ing method is applied to generate 500 bits on GIST-1M as
a bit pool. Table 2 lists the MAP using varying numbers of
hash bits, comparing different bit selection methods. From

0.2

ITQ

SPH
——RMMH
—6—Random

Greedy
—A—DomSet
—8—NDomSet

06
0.15 05 /
A

ITQ

SPH
—RMVH
— Random

Greedy
— DomSet
‘ ‘ = NDomSet
128 0 2 4 6 8 10

number of top retrieved samples , 44¢

(b) R @ 32 bits

MAP

0.1

0.05

32 64
number of bits

(a) MAP @ 8-128 bits

8 16

PH2

0.35

N
~

ITQ

SPH
——RMMH
——Random

Greedy
——DomSet
—— NDomSet

o
w
&

03

0.25

0.2

precision

0.15

o o
S o 9 » 9
oo v O w

0.1

0.05 0.05

0.6

0.4
recall

& N et et 0 0.2
of ?\\N\m&o O@e 0°®%V\0°6\6

(c) PH2 @ 32 bits (d) P-R @ 32 bits

Figure 4. Performance comparison of bit selection methods over multiple hashing algorithms on GIST-1M.

the table, two main observations can be obtained: (1) The
performances of all methods improve when using more hash
bits; (2) NDomSet works well over both hashing methods
and consistently outperforms all baselines significantly. The
results indicate that only considering one from similarity
preservation and mutual independence will be difficult for
bit selection methods to explore the best bit subset on the
dataset, while our method can complementarily combine
both properties and thus achieves the best performance.
LSH generates hashing functions independently, and thus
Random over it is equivalent to the original hashing method.
It can be noted that NDomSet attains significant perfor-
mance gains over LSH (or Random): 34.20% using 32 bits,
and 19.48% using 64 bits.

The proposed bit selection can also work well with
multiple hashing methods, besides being compatible with
multiple features. A bunch of hashing methods have been
developed in the literature, however, these methods are usu-
ally prevented from being widely used, due to the limited
hash code length, stemming from the feature dimension
[4,19] or the landmark number [14]. Therefore, it becomes
very beneficial to select the required number of bits using
bit selection over multiple hashing methods. To evaluate
the selection performance, we build a large bit pool with
600 bits, of which 200 are respectively generated by ITQ,
SPH, and RMMH with 960-D GIST feature. Then all bit
selection methods are performed on this pool and compared
with original hashing methods using its top bits on GIST-
IM.

In Figure 4, we report several performance statistics
based on the Euclidean groundtruth. We show the recall,
hamming lookup precision within radius 2 (PH2), and P-R
curves using 32 bits, and investigate the MAP tendency with
8-128 hash bits. First note that in this experiment similarity
preservation is more crucial than independence for the se-
lection on mixed hash bits: in Figure 4 (a) Greedy achieves
a close performance to that of RMMH, and a superior one
to DomSet. It means that to a certain extent the candidate
bits from the three hashing methods are individually of
high quality and mutually independent. Even so, our bit

Table 2. MAP (%) of bit selection over different hashing algo-
rithms using 32 - 128 bits on GIST-1M.

500 BITS [32 64 128
LRH [15] 3.71+£0.19 6.93+0.21 11.2740.16
RANDOM 3.834+0.13 6.88+0.24 11.1540.33

LSH GREEDY 3.1940.22 5.18+0.17 8.8440.15
DOMSET 1.9440.06 4.13£0.13 8.31£0.17
NDOMSET | 5.1440.11 8.221+0.20 12.07+0.19
LRH [15] 3.894+0.20 7.02+0.24 11.534+0.23
RANDOM 4.2440.38 6.984+0.43 11.8140.20
PCAR GREEDY 3.414+0.13 5.5940.25 9.484+0.20
DOMSET 1.974+0.15 4.214+0.24 8.874+0.27
NDOMSET | 5.484+0.30 8.93+0.33 13.28+0.14

selection method, incorporating both criteria, can faithfully
boost the performance over the three hashing methods, and
meanwhile surpasses all other selection baselines.

5.2.3 Bit selection over multiple bit hashing

Most of state-of-the-art hashing methods generate a single
bit by thresholding once along each projection vector. This
might result in unexpected loss of similarity preservation,
because the threshold, typically lying in the dense re-
gion, partitions neighbor points close to the threshold to
different bits. Several works have attempted to improve
the hashing performance by generating multiple bits per
projection [11, 14]. Since the quality of bits per projection
varies, especially for the hierarchical hashing process, it is
reasonable that we can select the most informative bits.

Baselines. We employ bit quantization (DB) [11] with
equal probability thresholding on PCAR (PCAR-DB) and
ITQ (ITQ-DB) as our multiple bit hashing baselines.

A 500 bit pool is first built with 250 bits generated
by PCAR-DB and the rest bits by ITQ-DB on GIST-1M.
Figure 5 shows the results comparing PCAR-DB, ITQ-DB,
and different bit selection methods. In Figure 5 (a) the MAP
increases when using more bits, and NDomSet consistently
achieves the best performance. Compared with greedy
selection, Random and DomSet give the worst performance,
which indicates that the quality of hash bits generated

0.16

PCAR-DB
0141 i1q-pB 06
0.12} | —®—Random
Greedy 05
0.1| —+— DomSet 04
o —8— ND = 0.
< 008 omSet g
= 203 PCAR-DB
0.06 —ITQ-DB
0.2 —Random
0.04
Greedy
0.02) 0.1 —— DomSet
4 —— NDomSet
0 ; ; ; 0 ; ; ; :
8 16 32 64 128 0 2 4 6 8

number of bits number of top retrieved samples , 14*

(a) MAP @ 8-128 bits (b) R @ 32 bits

10

PH2

0.25

0.2

0.15

0.1

0.05

0

PP
?ogz «© W,eé @

PCAR-DB
—ITQ-DB
——Random

Greedy
— DomSet
—— NDomSet

precision

0.4 0.6
recall

0 0.2

SN o e 0.8 1
o oo

(c) PH2 @ 32 bits (d) P-R @ 32 bits

Figure 5. Performance comparison of bit selection methods over multiple bit hashing on GIST-1M.

by DB varies widely and thus most information might
be contained in a very small bit subset. Previous works
report that double bit quantization improves the hashing
performance [11, 14]. Here our bit selection method ranks
first with a large margin compared to the best competitors
greedy selection and ITQ-DB in terms of MAP (up to
45.66% and 56.76% gaps respectively), recall, PH2 (up
to 51.47% and 62.86% gaps respectively) and P-R curves
using 32 bits. This fact leads to the conclusion that our
bit selection method can further improve performances over
DB by elegantly examining the most dominant bit subset.

6. Conclusion

We proposed a unified bit selection method support-
ing various scenarios. It was formulated as a quadratic
programming that simultaneously considers both similarity
preservation and independence between bits. By represent-
ing the large bit pool as a vertex- and edge-weighted graph,
the desired selected bit subset corresponds to the introduced
normalized dominant set, and can be solved efficiently by a
quadratic programming. Comprehensive results over large-
scale benchmarks are considerably encouraging: for several
scenarios the proposed bit selection method significantly
outperforms the state-of-the-art hashing methods.

7. Acknowledgement

This work is supported in part by National Major Project
of China (2010Z2X01042-002-001-00) and the SKLSDE
Foundation (SKLSDE-2011ZX-01).

References

[1] C. Baier, J.-P. Katoen, and H. Hermanns. Approximate
symbolic model checking of continuous-time markov chains.
In CONCUR, pages 146-161. Springer-Verlag, 1999.

T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.
Nus-wide: a real-world web image database from national
university of singapore. In CIVR, 2009.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In SCG, 2004.

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]
(10]
(1]
(12]

[13]

[14]

(15]

(16]
(17]

(18]

(19]
(20]

(21]

Y. Gong and S. Lazebnik. Iterative quantization: A pro-
crustean approach to learning binary codes. In CVPR, 2011.
J. He, S. Kumar, and S.-F. Chang. On the difficulty of nearest
neighbor search. In /ICML, 2012.

J. He, R. Radhakrishnan, S.-F. Chang, and C. Bauer. Com-
pact hashing with joint optimization of search accuracy and
time. In CVPR, 2011.

J. Heo, Y. Lee, J. He, S.-F. Chang, and S. Yoon. Spherical
hashing. In CVPR, 2012.

H. Jegou, M. Douze, and C. Schmid. Product quantization
for nearest neighbor search. IEEE TPAMI, 33(1):117-128,
2011.

A. Joly and O. Buisson. Random Maximum Margin Hash-
ing. In CVPR. IEEE, 2011.

B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In /ICCV, 2009.

Y. Lee, J. Heo, and S. Yoon. Quadra-embedding: Binary
code embedding with low quantization error. InACCV, 2012.
H. Liu and S. Yan. Robust graph mode seeking by graph
shift. In /ICML, 2010.

S. Liu, H. Liu, L. J. Latecki, S. Yan, C. Xu, and H. Lu. Size
adaptive selection of most informative features. In AAAI,
2011.

W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with
graphs. In ICML, 2011.

Y. Mu, X. Chen, X. Liu, T.-S. Chua, and S. Yan. Multimedia
semantics-aware query-adaptive hashing with bits reconfig-
urability. I/JMIR, pages 1-12, 2012.

M. Norouzi and D. J. Fleet. Minimal loss hashing for
compact binary codes. In ICML, 2011.

M. Pavan and M. Pelillo. Dominant sets and pairwise
clustering. IEEE TPAMI, 29(1):167-172, 2007.

J. Song, Y. Yang, Z. Huang, H. Shen, and R. Hong. Multiple
feature hashing for real-time large scale near-duplicate video
retrieval. In ACM MM, 2011.

J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for scalable image retrieval. In CVPR, 2010.

J. Wang, S. Kumar, and S.-F. Chang. Sequential projection
learning for hashing with compact codes. In ICML, 2010.

Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, 2008.

