Hash Bit Selection: a Unified Solution for Selection Problems in Hashing Xianglong Liu¹, Junfeng He^{2,3}, Bo Lang¹, and Shih-Fu Chang² ¹Beihang University, ²Columbia University, ³Facebook

1. Overview

• Problem: to apply hashing techniques successfully, there are several important issues remaining open in selecting features, hashing algorithms, parameter settings, kernels, etc.

• Motivation: similar to feature selection, give a unified solution that can directly *select the most desirable subset of hash bits* from different bit sources, targeting the specific scenario.

• Scenarios: hashing with multiple features, multiple hashing algorithms, multi-bit hashing algorithms, etc.

2. Hash Bit Selection

• Goal: to exploit a small bit subset S (of size I) from the pooled L types of bits with index set $V = \{1, \ldots, L\}$

• Criteria: two properties critical for compact hash codes

A. similarity preservation:

B. mutual independence:

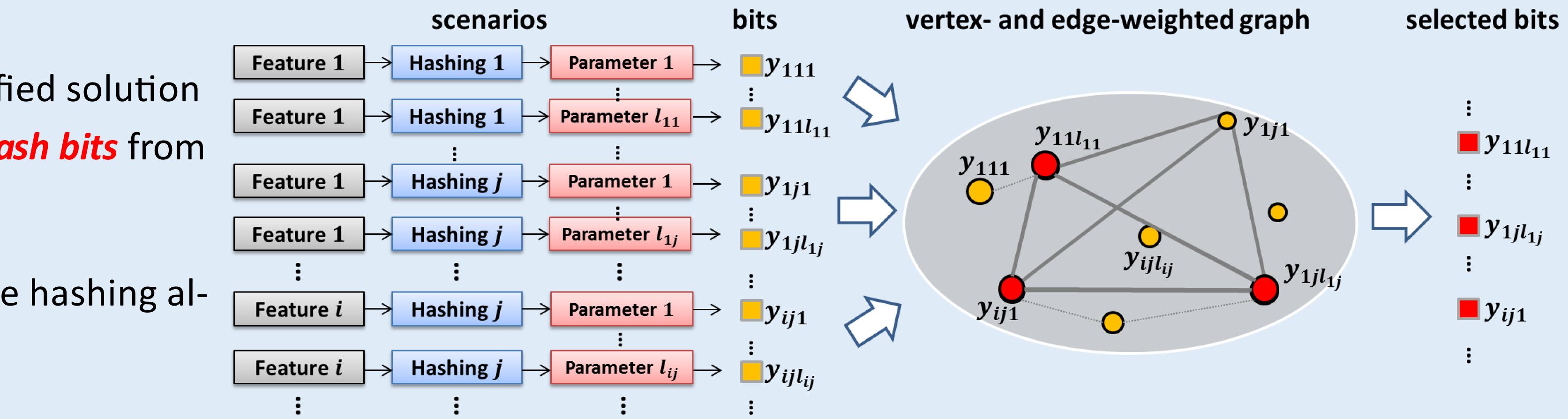
 $\pi_i = \exp\left(-\gamma \mathbf{y}_i \mathcal{L} \mathbf{y}_i^T\right)$ $a_{ij} = \exp\left[-\lambda \sum_{b_i, b_j} p(b_i, b_j) \log \frac{p(b_i, b_j)}{p(b_i)p(b_j)}\right]$

• Formulation: a quadratic programming (QP) solved efficiently

$$\begin{array}{ll} \max & \frac{1}{2}\mathbf{x}^T \hat{A} \mathbf{x} \\ \text{s.t.} & \mathbf{x} \in \Omega \end{array}$$

 $\Omega = \{ \mathbf{x} \in \{0,1\}^L : |\mathbf{x}|_0 = l \} \quad \stackrel{\mathsf{relax}}{\longrightarrow} \quad \{ \mathbf{x} \in \mathbb{R}^L : \mathbf{x} \ge 0 \text{ and } \mathbf{1}^T \mathbf{x} = 1 \}$

Cohesiveness between bits: $\hat{A} = \Pi A \Pi$, satisfying: $\hat{A}_{ij} \ge 0, \hat{A}_{ij} = \hat{A}_{ji}, \text{ and } \hat{A}_{ij} \propto \pi_i, \pi_j \text{ and } a_{ij}$



3. Theoretic Analysis

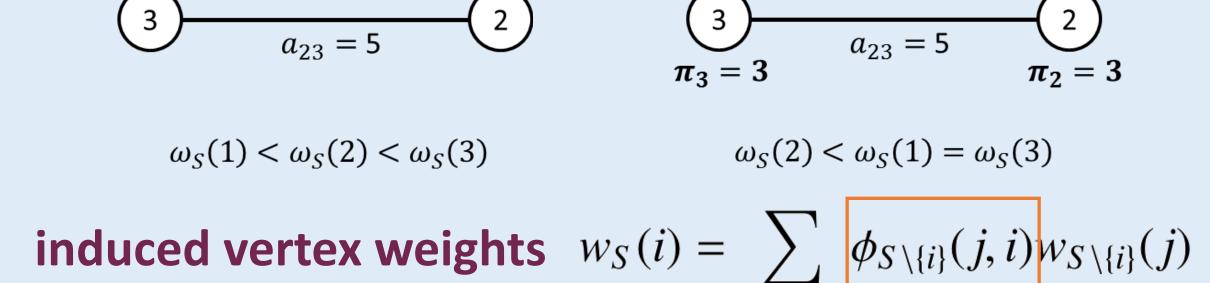
• Graph representation: represent the pooled bits as a vertex-weighted and undirected edge-weighted graph $G = (V, E, A, \pi)$ • Normalized dominant set (NDomSet): bit selection is equivalent to the discovery of a normalized dominant set that has high internal vertex weights and edge weights

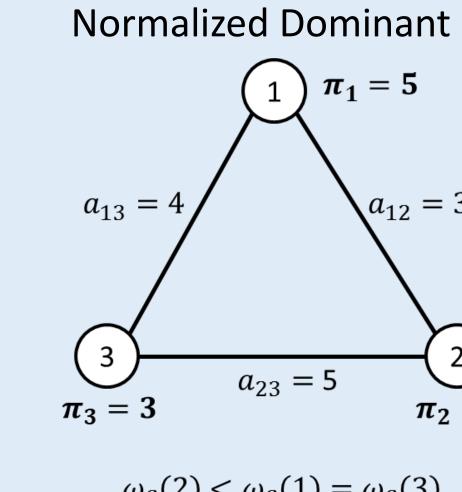
external connection $\phi_S(j,i) = \frac{\pi_j}{\pi}(a_{ji} - f(S,j|i))$

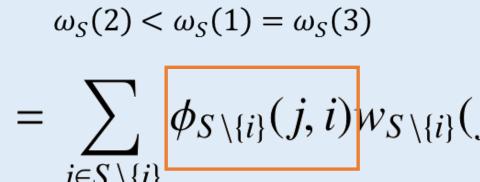
has $w_{S}(i) > 0$

• Connections with QP: the non-zero elements of the local optima of the QP problem form the normalized dominant set .

Induced vertex weights: naturally score each vertex, and a NDomSet Normalized Dominant Set **Dominant Set** $(1) \pi_1 = 5$

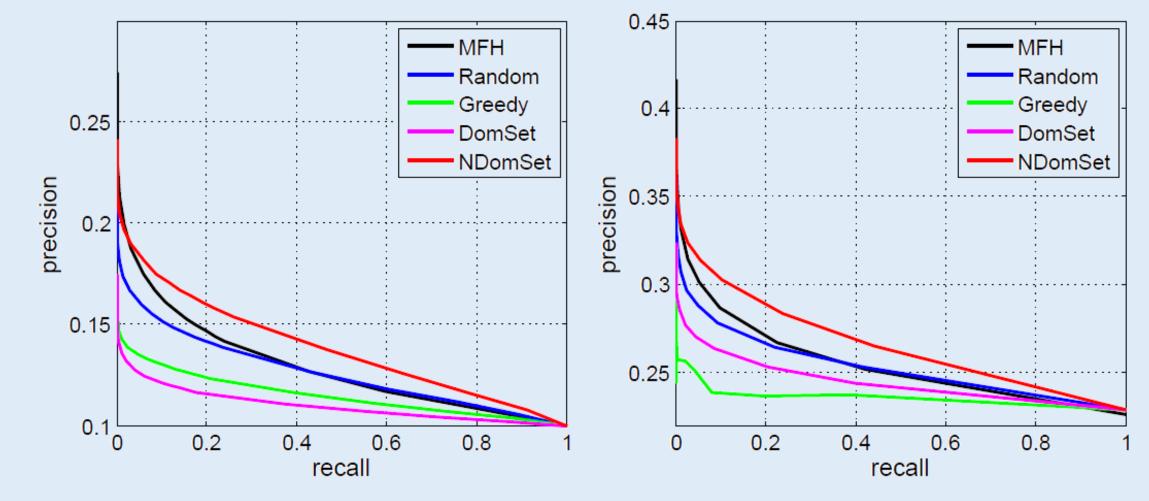




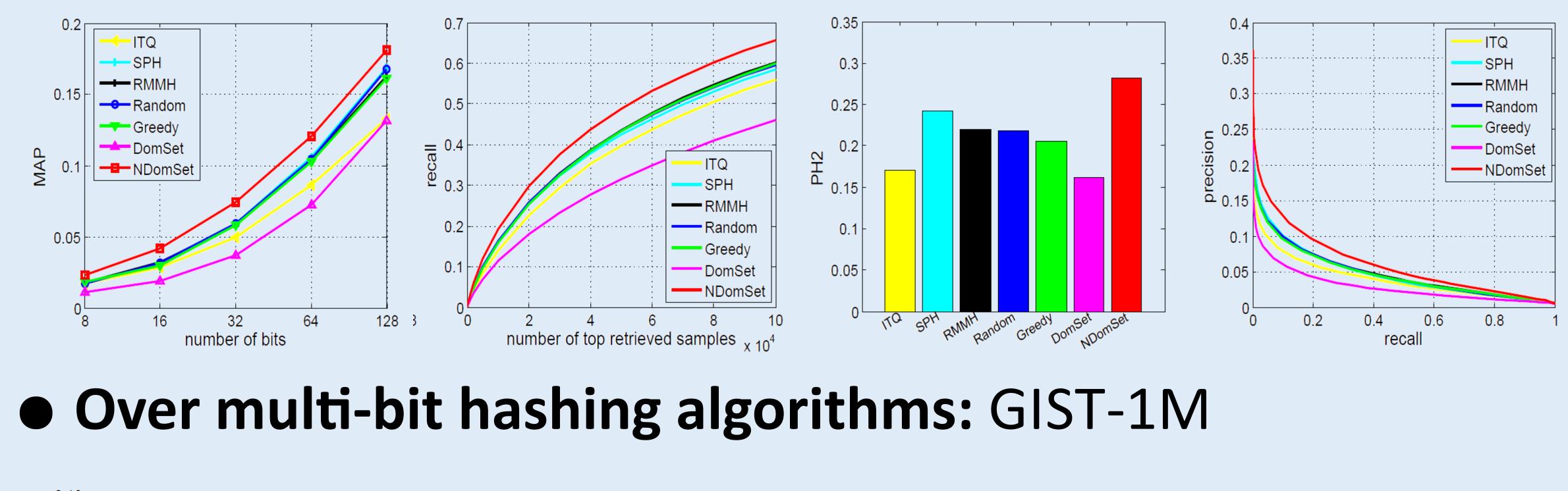


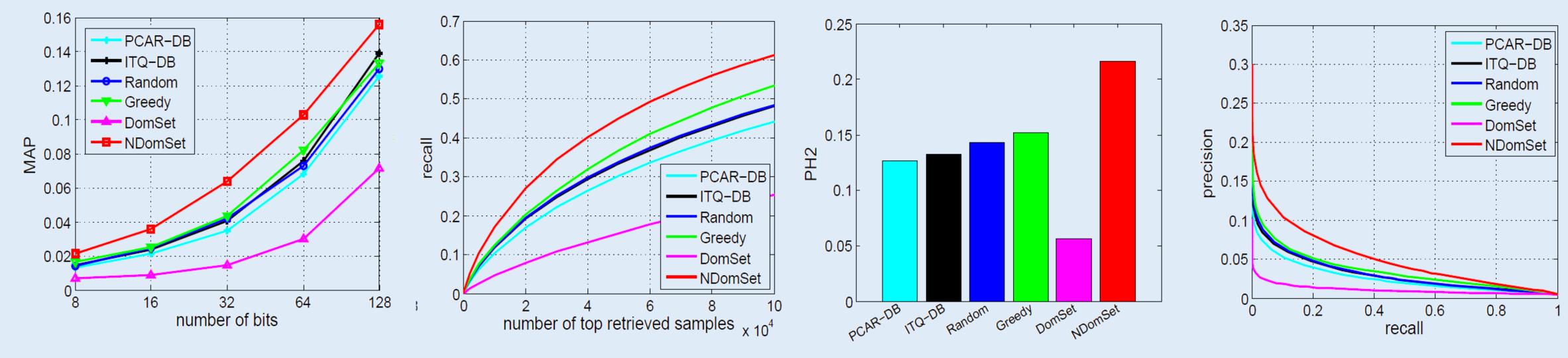
4. Experimental Results

• with multiple features: CIAFR-10 and NUS-WIDE



• Over multiple hashing algorithms: GIST-1M





5. Summary and Conclusions

- Formulate the problem as a quadratic programming and reveal its nature via the normalized dominant set
- More information http://www.nlsde.buaa.edu.cn/~xlliu

500 bits	CIFAR-10		NUS-WIDE	
	32	64	32	64
MFH [18]	13.44 ± 0.09	12.74 ± 0.04	25.28 ± 0.37	25.91 ± 0.37
RANDOM	13.30 ± 0.74	14.32 ± 0.42	25.69 ± 0.51	26.34 ± 0.56
GREEDY	12.17 ± 0.42	12.92 ± 0.41	23.91 ± 0.37	24.16 ± 0.36
DomSet	11.19 ± 0.06	11.97 ± 0.06	24.66 ± 0.49	25.66 ± 0.51
NDOMSET	14.80 ±0.34	15.64 ±0.35	27.17 ±0.23	27.74 ±0.16

Our proposed method performs significantly better than existing approaches

Propose a generic bit selection unifying various scenarios

• Consider two important criteria tailored for hashing performance