

Collaborative Hashing Xianglong Liu¹, Junfeng He², Cheng Deng³ and Bo Lang¹ ¹Beihang University, ²Facebook, ³Xidian University Term

1 Overview

• **Observation:** many scenarios involve nearest neighbor search on the data in matrix form, z where two different types of, yet naturally associated entities respectively correspond to its two dimensions or views.

• **Problem:** most hashing research pursue the binary codes for the same type of entities only relying on their intra-similarities. • Motivation: the semantic correlations between the coupled views together with the intra-view similarities will help enhance the discriminative power of the hash codes for each view by discovering their collective patterns and duality • Applications: a novel generic hashing scheme for the fast and accurate (1) search inside a single view: eg., the visual search using local descriptors, and (2) search across different views: eg., recommendation using user-item rating matrix

2 Collaborative Hashing

• Formulation: exploit the intrinsic relations in matrix data: both neighbor structures in each view and semantic correlations be-

tween views correspondingly by minimizing:

binary quantization loss: **correlation prediction loss:** $E_{\text{rate}} = \frac{1}{nm} \sum \left[\sigma c(\mathbf{h}_i, \mathbf{g}_j) - u_{ij} \right]^2$ s.t. constraints:

 $E_{\text{quan}} = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{h}_i - R_h \tilde{\mathbf{u}}_i\|^2 + \frac{1}{m} \sum_{i=1}^{m} \|\mathbf{g}_j - R_g \hat{\mathbf{u}}_j\|^2$ $R_h^T R_h = I, \ R_a^T R_a = I$

- **Optimization:** alternate among variables binary codes H and G: singular value decomposition rotation matrices R_h and R_a: singular value decomposition prediction scalar: least square problem $\min_{\sigma} \|\sigma\left(\frac{1}{2} + \frac{1}{2h}H^TG\right) - U\|_F^2$
- Applications: a general hashing framework for different search paradigms

search inside a single view: finding similar entities of the same type, where U is dense with all elements observed search across different views: seeking correlated entities of different types, where U is sparse $E_{\text{rate}} = \frac{1}{\|A\|_1} \|\sigma \left(\frac{1}{2} + \frac{1}{2b} H^T G \right) \circ A - U\|_F^2$

3 Experiments • Search with Bag of Words

P-R @ 64 bits on Holidays+25K

• Recommend using User-Item Ratings

DATASETS	HASH	16 BITS		32 BITS		48 BITS		64 BITS	
		NDCG@5	NDCG@10	NDCG@5	NDCG@10	NDCG@5	NDCG@10	NDCG@5	NDCG@10
MOVIELENS	LSH	2.99 ± 0.22	3.00 ± 0.23	2.89 ± 0.13	2.88 ± 0.09	2.90 ± 0.14	2.91 ± 0.13	2.93 ± 0.22	2.90 ± 0.20
	ITQ	4.35 ± 0.72	4.38 ± 0.74	3.97 ± 0.59	3.94 ± 0.62	4.24 ± 0.86	4.10 ± 0.70	4.00 ± 0.52	3.92 ± 0.46
	LCH	22.72 ± 1.43	20.77 ± 1.26	23.52 ± 0.73	21.77 ± 0.69	27.64 ± 0.95	25.43 ± 0.76	30.89 ± 0.69	28.24 ± 0.57
	BCCF	20.87 ± 0.42	19.02 ± 0.33	26.11 ± 0.42	23.24 ± 0.30	28.43 ± 0.29	25.12 ± 0.16	30.47 ± 0.27	26.71 ± 0.18
	CH	28.26 ± 0.70	26.39 ± 0.55	36.15±0.40	33.09±0.42	41.07±0.49	37.28±0.37	45.06±0.37	40.64±0.28
NETFLIX	LSH	2.57 ± 0.16	2.57 ± 0.16	2.69 ± 0.21	2.65 ± 0.18	2.67 ± 0.20	2.65 ± 0.19	2.62 ± 0.12	2.63 ± 0.10
	ITQ	3.75 ± 0.82	3.64 ± 0.63	3.38 ± 0.71	3.49 ± 0.68	3.07 ± 0.60	3.10 ± 0.59	3.17 ± 0.51	3.25 ± 0.48
	LCH	20.92 ± 0.70	19.50 ± 0.65	28.04 ± 0.38	25.93 ± 0.34	33.00 ± 0.45	30.21 ± 0.26	36.97 ± 0.24	33.50 ± 0.23
	BCCF	20.12 ± 0.66	18.79 ± 0.56	28.04 ± 0.45	25.70 ± 0.36	31.90 ± 0.55	29.27 ± 0.34	34.59 ± 0.60	31.62 ± 0.46
	CH	23.75 ± 0.55	22.25 ± 0.43	33.48±0.38	31.02±0.34	38.41±0.43	35.45±0.32	42.55 ± 0.51	38.95±0.39

4 Conclusions

Table 1. MAP (%) of different hashing algorithms using 32 - 128 bits on Holidays dataset.

HOLIDAYS	HASH	32 BITS	64 BITS	128 BITS
	LSH	1.63 ± 0.29	3.63 ± 0.34	7.05 ± 0.51
	SH	12.65 ± 0.67	16.36 ± 0.60	21.19 ± 1.32
+15K	RMMH	8.00 ± 0.87	11.28 ± 1.40	16.56 ± 1.64
	ITQ	18.86 ± 0.75	25.42 ± 0.61	30.73 ± 0.72
	LCH	17.96 ± 0.47	25.95 ± 0.72	31.87 ± 0.50
	CH	20.95±0.82	27.54 ± 0.49	32.34±1.30
	LSH	1.01 ± 0.19	1.68 ± 0.24	4.38 ± 0.56
	SH	$8.84{\pm}1.13$	11.76 ± 0.75	15.59 ± 1.05
+25K	RMMH	5.39 ± 1.03	7.59 ± 1.14	11.60 ± 0.40
	ITQ	16.49 ± 0.81	22.92 ± 0.96	28.52 ± 0.71
	LCH	12.67 ± 1.13	20.94 ± 0.82	29.73 ± 0.77
	CH	18.42 ± 0.56	25.61 ± 0.64	31.23 ± 0.51
	LSH	0.56 ± 0.12	1.14 ± 0.13	2.69 ± 0.19
	SH	$8.00 {\pm} 0.91$	8.03 ± 1.13	9.09 ± 0.57
+100K	RMMH	4.22 ± 0.43	4.98 ± 0.36	7.67 ± 0.93
	ITQ	12.34 ± 0.60	17.21 ± 1.38	22.18 ± 1.11
	LCH	8.67 ± 0.83	15.64 ± 1.27	22.41 ± 0.70
	CH	12.53 ± 0.62	18.53 ± 0.80	24.02 ± 0.23

 a collaborative hashing scheme for data in matrix form that can learn hash codes for both types of entities in the matrix an efficient optimization method to learn hash functions simultaneously exploiting both intra- and inter-view similarities two classic search applications based on collaborative hashing