
Adaptive Binary Quantization for Fast Nearest Neighbor
Search

Zhujin Li1 and Xianglong Liu∗2 and Junjie Wu3 and Hao Su4

Abstract. Hashing has been proved an attractive technique for fast
nearest neighbor search over big data. Compared to the projection
based hashing methods, prototype based ones own stronger capabil-
ity of generating discriminative binary codes for the data with com-
plex inherent structure. However, our observation indicates that they
still suffer from the insufficient coding that usually utilizes the com-
plete binary codes in a hypercube. To address this problem, we pro-
pose an adaptive binary quantization method that learns a discrimina-
tive hash function with prototypes correspondingly associated with
small unique binary codes. Our alternating optimization adaptive-
ly discovers the prototype set and the code set of a varying size in
an efficient way, which together robustly approximate the data rela-
tions. Our method can be naturally generalized to the product space
for long hash codes. We believe that our idea serves as a very help-
ful insight to hashing research. The extensive experiments on four
large-scale (up to 80 million) datasets demonstrate that our method
significantly outperforms state-of-the-art hashing methods, with up
to 58.84% performance gains relatively.

1 Introduction
In the past decade, hashing technique has been widely studied for
fast nearest neighbor search, owing to its successful applications in
many areas like large-scale visual search [4, 23, 33, 25, 30], ma-
chine learning [9, 19, 26, 21], recommendation system [22], etc. As
the most essential concept in hashing based nearest neighbor search,
Locality-Sensitive Hashing (LSH) was first introduced in [8], which
guarantees that the nearest neighbors share the similar binary codes,
and thus enables fast search with compressed storage over gigantic
databases.

The pioneer LSH research adopted a random projection paradig-
m for the metrics like lp-norm (p ∈ (0, 2]) [1]. Due to its simple
form and efficient computation, projection based hashing has be-
come the most widely accepted hashing paradigm, where the data
point is first projected along certain direction and further quantized
to a binary value. Since the randomly generated projection vectors
are independent from the data, they usually suffer from the heavy
redundancy and the lack of discriminative power for nearest neigh-
bors. To leverage the information contained in the data, recent studies
attempted to learn the projection based hash function, which have
shown the success in the generation of discriminative hash codes
[31, 3, 13, 12, 27, 16, 33, 7, 22, 17, 34, 32, 11].

1 State Key Lab of Software Development Environment, Beihang University,
China, email: lizhujin@outlook.com

2 State Key Lab of Software Development Environment, Beihang University,
China, email: xlliu@nlsde.buaa.edu.cn, ∗corresponding author

3 Beihang University, China, email: wujj@buaa.edu.cn
4 Stanford University, USA, email: haosu@stanford.edu

Despite the progress in the projection based hashing research,
state-of-the-art methods still cannot well approximate the nearest
neighbor relations using their binary codes. This is mainly because
that the linear form is somewhat beyond the strong capability of
capturing the data characteristics with complex inherent structures
[5, 24]. Although the nonlinear mapping techniques, like kernel
which uplifts the data into an informative space, have been widely
used to alleviate the problem [28, 15, 14, 18], they are a little time-
consuming on the one hand, and still hard to exploit the underlying
data structures using the binary quantization on the other hand.

In the literature, clustering has been proved a powerful quantiza-
tion method to well model the complex relationships among data us-
ing a number of prototypes. This inspires the recent hashing studies
that attempt to exploit the clustering structure among data in the bi-
nary quantization. Typical methods include spherical hashing (SPH)
[6] and K-means hashing (KMH) [5], both of which explicitly pur-
sued a number of prototypes to approximate the data relations, and
adopted different coding schemes to quantize the data samples based
on these prototypes. Different from projection based hashing where
each hash function is parameterized by the projection vectors, these
prototype based hashing methods define the hash functions based on
the discovered prototypes, and promisingly increase the search per-
formance with much less quantization loss.

Existing prototype based hashing methods like KMH make use
of the complete binary code set, which geometrically forms a hy-
percube with a fixed dimension and structure among the codes (or
the vertices). In practice, the real-world data usually distribute with
a complex structure, which can be hardly characterized by such a
hypercube. A demonstrative case on a subset of SIFT-1M dataset is
presented in Figure 1, where KMH as the typical prototype based
hashing outperforms the state-of-the-art projection based ITQ (see
Figure 1 (a) and (b)), however using 3-bit codes the Hamming dis-
tances among the prototypes (marked by stars with different colors)
cannot well approximate the original ones (the hypercube is skewed
in Figure 1(b)).

In fact, a better coding solution only relying on a small subset
of binary codes (instead of the complete set) can largely educe the
quantization loss (see Figure 1 (c)). This is because the incomplete
coding can match with the data distribution in a more reasonable
way, and thus better approximate neighbor relations. Motivated by
this observation, this paper proposes an adaptive binary quantization
(ABQ) method that can pursue a discriminative hash function with
varying number of prototypes, each of which is associated with a
unique and compact binary code. The prototype set and codes are
jointly discovered to respectively characterize the data distribution
in original space and align the code space to the prototype distribu-
tion. Therefore, the learnt prototype based hash function can promise

−20
−10

0
10

20

−20
−10

0
10

20

−20

−10

0

10

20

 000

 010

 100

 001

ITQ loss: 0.39

 110

 011

 101

 111

(a) ITQ

−20
−10

0
10

20

−20
−10

0
10

20

−20

−10

0

10

20

 001

 000

 101

 100

KMH loss: 0.32

 011

 010

 111

 110

(b) KMH

−20
−10

0
10

20

−20
−10

0
10

20

−20

−10

0

10

20

 111

 011

 110

ABQ loss: 0.25

 001

 010

 000

(c) ABQ (ours)

Figure 1. The geometric view of the binary quantization using different methods on a subset of SIFT-1M (projected into 3-dimensional space using PCA like
ITQ method). The quantization loss is computed according to (3).

discriminative binary codes that can largely approximate the neigh-
bor structures. We further apply product quantization to generaliz-
ing our method for long hash codes. Experimental results over four
large-scale datasets demonstrate that the proposed method signifi-
cantly outperforms state-of-the-art hashing methods.

2 Prototype Based Binary Quantization
Along the direction of prototype based hashing, this section will
present our proposed adaptive binary quantization method (denoted
as ABQ hereafter) in details.

2.1 Hash Function with Prototypes
Supposing we have a set of n training samples, we denote xi ∈
Rd×1, i = 1 . . . n to be the feature vector of i-th sample, where
d is the feature dimension. Let X = [x1,x2, . . . ,xn] ∈ Rd×n be
the data matrix. Our basic idea is to learn an informative binary hash
function that encodes the training data X into b-length hash codes
Y = [y1,y2, . . . ,yn] ∈ {−1, 1}b×n, which show sensitivity to
neighbor structures of the data.

The literature has proved that as representative samples among the
large-scale database, the prototypes show robustness to the more gen-
eral metric structure for the data in high dimensional space. Subse-
quently, in order to capture the neighbor structure using the prototype
based hashing, the hash codes should preserve the relations among
the prototypes. To meet this goal, one simple, yet powerful way is to
assign each prototype a unique binary code in certain order.

In particular, a set of prototypes P = {pk|pk ∈ Rd} are learnt
from the training data, and each prototype is associated with a b bit
binary code ck ∈ {−1,+1}b, forming a binary codebook C. Then
for any data point x, it can be represented by its nearest prototype
pi∗(x) according to the specific distance function do(·, ·), where

i∗(x) = argmin
k
do(x,pk), (1)

and encoded by the code ci∗(x) associated with pi∗(x).
Subsequently, we can define the hash function h(x) as

h(x) = ci∗(x). (2)

Most of existing hashing methods attempt to pursue a series of
hash functions, each of which generates a hash bit, forming a long

hash code. Therefore, these methods have to append additional con-
straints to reduce the redundancy among these individual bits, which
usually degenerates the performance with unreasonable assumption-
s. Our prototype based hashing like the most related work k-means
hashing [5] can exploit the complex data structure and jointly gener-
ate a number of hash bits at the same time.

Ideally, the small set of representative prototypes can reduce the
computation and introduce sparsity without using the full dataset in
binary quantization step. Meanwhile, they can capture the discrimi-
native essence of the dataset with the sensitivity to metric structure
and the robustness to overfitting. Therefore, choosing the positioning
of the prototypes wisely can lead to a drastically reduced effort while
maintaining the discriminative power of the original dataset.

2.2 Space Alignment

The binary codes encoding the data are constrained in the vertices
of a hypercube with constant affinities between them. However, in
practice it rarely happens that the data geometrically distribute in
such a perfect structure. Therefore, an optimal binary coding strate-
gy is highly required to jointly find the discriminative prototypes and
their associated binary codes, which respectively characterize the in-
herent data relations, and maintain the affinities between samples in
Hamming space.

Intuitively, the prototype based hash function h should approx-
imate the relations between any two samples xi and xj using their
binary codes. A straightforward way is to concentrate on the distance
consistence so that codes in Hamming space will be aligned with the
original data distribution. Formally, we introduce the quantization
loss to measure the space alignment:

Q(Y,X) =
1

n2

n∑
i,j=1

‖λdo(xi,xj)− dh(yi,yj)‖2 (3)

where dh(yi,yj) =
1
2
‖yi − yj‖ is the square root of the Hamming

distance between yi = h(xi) and yj = h(xj), and λ is a constant
scale parameter for the space alignment.

The above loss function involves n2 sample pairs, which preven-
t the efficient learning over a large training set. As we mentioned
above, the prototypes, as promising representatives of the whole da-
ta, have been proved to be able to substantially reduce the compu-
tation in many applications. Therefore, for any xi the distance from

2

another sample xj can be approximated as follows:

do(xi,xj) ≈ do(xi,pi∗(xj)). (4)

Motivated by the fact that the hash code of each sample xi is actually
equivalent to that of its nearest prototypes, namely, yi = ci∗(xi), the
above loss function can be rewritten in a more simple and efficient
way with respect to the prototypes P and their binary codes C

Q(P, C, i∗(X)) =

n∑
i=1

|P|∑
k=1

wk

n2
‖λdo(xi,pk)− dh(ci∗(xi), ck)‖

2,

where wk is the number of samples represented by pk.
Note that the above approximation actually corresponds to the

widely-used asymmetric distance, where the database samples are
substituted by their prototypes. The literature has shown that such
asymmetric approximation usually owns great power to alleviate the
quantization loss. Minimizing the above loss leads to a set of pro-
totypes that well capture the intrinsic neighbor structure among the
data, and thus a discriminative coding solution that consistently pre-
serves the original relations in Hamming space. Besides, the above
loss actually enforces that the close samples in the original space can
be clustered in the same group represented by one prototype, and
meanwhile their hash codes also maintain the distribution in Ham-
ming space, which together align the neighbor structures between
the two spaces.

Therefore, we can formulate the hashing problem in terms of the
space alignment as follows:

min
P,C,i∗(X)

Q(P, C, i∗(X))

s.t. ck ∈ {−1, 1}b; cTk cl 6= b, l 6= k.
(5)

Here, the constraints on the binary codebook C will guarantee that
each prototype will be assigned a unique binary code.

It should be pointed out that here the number of prototypes or the
size of the codebook isn’t fixed beforehand, which is quite differen-
t from prior hashing research like [6, 5] where all possible binary
codes (i.e., 2b using b bits) are assumed to be used in the binary
quantization. Indeed, we adaptively decide the number in our opti-
mization according to the data metric structure. To some extent, this
strategy will avoid the rigorous and difficult alignment between the
prototypes and the hypercube binary codes, and thus faithfully helps
discover more consistent and discriminative prototypes and the cor-
responding codebook.

By solving the above problem, the prototype setP can be obtained
that captures the overall data distribution, which can also be reflected
by the codebook C. Each prototype will be associated with a distinc-
t binary code, which together serve as a hash function that encodes
those points belonging to the prototype using the corresponding bi-
nary code. For a novel sample x, its hash bits can be computed fast
by first determining its nearest prototype according to (1), and then
assigning the binary code according to (2).

3 Alternating Optimization
To solve the above problem with respect to a small b, we present
an alternating optimization solution, which pursues the near-optimal
prototypes and adaptively determine the corresponding binary codes
in an efficient way. For the efficiency, usually we choose a small b
(e.g., b ≤ 8), and later we will discuss how to obtain a much longer
hash code.

3.1 Adaptive Coding

Supposing we have the prototypes and the assignment index for each
sample (see the initialization in Section 3.4), the problem turns to the
discriminative binary coding that consistently keeps the distribution
information of the samples in the original space. Although k-means
hashing [5] as the most related work can capture the cluster structure
and find an encouraging binary coding solution, its discriminative
power is still limited due to the concentration on the full hypercube
structure, which is beyond the true data distribution in practice.

Quite different from the previous research, we adopt an adaptive
coding that directly finds the binary codes most consistent with the
prototypes. Given the prototypes P and the assignment of each sam-
ple, we will sequentially find a locally optimal binary code for each
prototype in a greedy way. Specifically, supposing the prototypes
p1, . . . ,pl (1 ≤ l ≤ |P|) have been respectively assigned the binary
codes c1, . . . , cl, we next select the optimal code ck for prototype
pk from the set C̃ = {−1, 1}b − {c1, . . . , cl} of remaining hash
codes. Then for ck, the objective function in (5) turns to

min
ck∈C̃

∑
i∗(xi)=k

∑
k′ 6=k

wk′‖λdo(xi,pk′)− dh(ck, ck′)‖2

+
∑

i∗(xi)6=k

wk‖λdo(xi,pk)− dh(ci∗(x), ck)‖2.
(6)

Since the code space is quite limited (|C̃| ≤ 2b), the above optimal
code pursuit can be completed efficiently using exhaustive search
over C̃.

As to the first step, we can simply choose any binary code as
the optimal c1. This is because the code space is highly symmetric
with a hypercube structure. After repeating |P| steps, we can assign
each prototype a unique hash code with the minimal coding loss, and
meanwhile greedily keep the original data distribution information.

3.2 Prototype Update

While the binary codebook C is discovered, the prototypes P should
be further calibrated to simultaneously capture the data distribution
and align it to the geometric structure in the code space. Therefore,
the above problem turns to:

min
P

n∑
i=1

|C|∑
k=1

wk‖λdo(xi,pk)− dh(ci∗(xi), ck)‖
2. (7)

To pursue a set of prototypes that well represent the data, we adopt
a two-step optimization, since the prototype discovery involves the
assignment variable i∗(xi). We first determine which prototype the
samples belong to, and then update the position of each prototype
based on the assignment.

Deriving from (7), the prototype that yields the least loss for each
sample xi can be found using a simple search:

min
k′≤|C|

|C|∑
k=1

wk‖λdo(xi,pk)− dh(ck′ , ck)‖2. (8)

With the assignment of each sample, we approximately recalculate
the position of each prototype:

pk =
1

wk

∑
i∗(xi)=k

xi, 1 ≤ k ≤ |C|. (9)

3

0 10 20
0.15

0.2

0.25

0.3

0.35

0.4

iterations

Lo
ss

0 10 20
50

100

150

200

250

iterations

pr

ot
ot

yp
es

0 10 20
1

2

3

4

5

6

iterations

M
A

P
 (

%
)

Figure 2. Demonstration of the adaptive binary quantization in one subspace (b = 8) on GIST-1M using 32 bits.

Algorithm 1 Adaptive Binary Quantization.
Input: Training data X, and the binary code length b.
Output: Hash function h, the prototype set P and the correspond-

ing binary code set C.
1: Initialize the assignment index i∗(X) and the prototype set P

using k-means.
2: Initialize the scale parameter λ according to (11).
3: repeat
4: for l = 1, . . . , |P| do
5: Find the local optimal code cl for pl by solving (6);
6: end for
7: Update the prototype set P according to (8) and (9);
8: Update the distribution i∗(X) according to (10);
9: until convergence

In this step the number of the prototypes varies, i.e., P is shrunk,
where the uninformative prototypes are eliminated. This is the most
different part from the previous research. Subsequently, the prototype
set can gradually adapt the binary codes to the data distribution in the
alternating optimization.

Figure 2 demonstrates how the performance benefits from the
adaptive prototype set, where as the number of prototypes decreas-
es, only a subset of the binary codes in the hypercube are utilized to
maximally capture the neighbor relations among data (also see Fig-
ure 1(c)), significantly reducing the quantization loss and meanwhile
improving the precision of nearest neighbor search.

3.3 Distribution Update

After the prototype set P is updated, the binary codebook size in the
next alternating round will be also determined. Moreover, the data
distribution with respect to P , characterized by the variable i∗(X),
will change slightly. Since the binary coding should maximally pre-
serve the data distribution, we further append an assignment updating
step to capture the distribution variation. This can be easily done by
employing a similar step in k-means:

i∗(xi) = arg min
k≤|P|

do(xi,pk). (10)

This is consistent with the hash function definition in (1), guarantee-
ing that the hash function can discriminatively preserve the intrinsic
data relations based on the prototypes.

3.4 Algorithm Details
Algorithm 1 lists the main steps of our adaptive binary quantization,
where some algorithm details are discussed as follows.

3.4.1 Initialization

To start the alternating optimization, we should first initialize the in-
dices i∗(X) and the prototype set P . In practice this can be complet-
ed by first fixing the size ofP to 2b, and then performing the classical
k-means algorithm on the training data X, where the cluster centers
are treated as the prototypes P , and each sample is assigned to its
nearest prototype.

Here we simply adopt k-means clustering to initialize the proto-
types. Although the quality of the prototypes depends on the cluster-
ing algorithm or seed selection in the k-means initialization phase,
we found that they do not affect the overall performance much. This
is mainly because the positions and the quantity of the prototypes
will be refined gradually in the iterative optimization to align the da-
ta distribution to the code space, and even with a coarse initialization,
one can still obtain the identical informative prototypes in a number
of iterations. Besides, since it has minor effects on the performance
according to our empirical results, we randomly select the order in
which the prototypes are processed in the adaptive coding step, i.e.,
Equation (6).

As to the scale parameter λ in Equation (3), it is intuitively adopt-
ed to make the distances comparable between the original and Ham-
ming space. Since we found it usually insensitive to the binary coding
process, we simply set it to a constant based on the initialization us-
ing k-means, assuming that all 2b prototypes are assigned different
binary codes:

λ =

1
2b

∑
ck,cl∈{−1,1}b dh(ck, cl)

1
n

∑n
i=1

∑2b

k=1 do(xi,pk)
. (11)

3.4.2 Product Quantization

For a desired level of performance, usually a long hash code is re-
quired in many practical applications. However, for the represen-
tation power and the computational efficiency, the prototype num-
ber usually ranges from tens to hundreds at most, which makes the
above algorithm only generate small codes with b ≤ 8. Fortunately,
our problem can be naturally generalized to product space for longer
hash codes, following the idea of product quantization (PQ) [10, 5].
In order to generate a sufficient long code of b∗ � b length, the PQ

4

method divide the original space intoM = b∗/b subspaces, in which
a small code of b = b∗/M length is respectively associated with each
sample and concatenated as a long one in a Cartesian product man-
ner.

Specifically, a vector x is represented asM sub-vectors in the way
x = [x̂(1), x̂(2), . . . , x̂(M)]T , where x̂(m) ∈ Rd×1 is the m-th sub-
vector of x, and its hash code ŷ(m) ∈ {−1, 1}b×1 can be generated
using the proposed adaptive quantization based on the sub-prototypes
p̂(m) ∈ Rd×1 and the sub-codebook ĉ(m) ∈ {−1, 1}b×1. The hash
code y for vector x is the concatenation of the sub-codes of its sub-
vectors: y = [ŷ(1), ŷ(2), . . . , ŷ(M)].

Recall that Equation (4) corresponds to the asymmetric distance
computation (ADC) in PQ. If the original distance do is defined as
Euclidean distance, PQ can approximate the distance between two
vectors using codewords (prototypes):

do(xi,xj) ≈ do(xi,pi∗(xj))

=

√√√√ M∑
m=1

do(x̂
(m)
i , p̂

(m)

i∗(x̂(m)
j)

)2
(12)

In each subspace, the learnt codes can approximate the origi-
nal distance do well using the Hamming based distance dh, i.e.,
λdo(x̂

(m)
i , p̂

(m)
k) ≈ dh(ŷ

(m)
i , ĉ

(m)
k). Then, with the definition of

the distance dh, we have:

λdo(xi,pk) ≈

√√√√ M∑
m=1

1

4
‖ŷ(m)

i − ĉ
(m)
k ‖2

=
1

2
‖yi − ck‖ = dh(ci∗(xi), ck)

(13)

Putting (12) and (13) together, it is easy to show that the origi-
nal distance between any two samples can be approximated by the
Hamming based distance between their hash codes in the Cartesian
space:

λdo(xi,xj) ≈ dh(ci∗(xi), ci∗(xj)) (14)

Note that the above approximation requires that the scale parame-
ter λ remains the same across all subspaces, which holds roughly in
practice over many datasets. Therefore, we set it to the average of the
values computed according to Equation (11) in all subspaces.

Prior research has pointed out that equally splitting the space into
M parts might result in ineffective hash codes, due to the unbalanced
information distribution [5]. Usually independent subspaces are pur-
sued to balance the information among the small codes of each sam-
ple. Therefore, in the space decomposition, we apply the eigenvalue
allocation method to evenly distribute the variance using PCA pro-
jection without dimension reduction [2]. One can also further append
an adaptive bit allocation to maximally capture the data information
using different number (or code length) of hash bits [20].

3.4.3 Complexity

To learn the hash functions that can generate binary codes of b∗

length, we need to compute the small codes in M = b∗/b inde-
pendent subspaces. For each subspace, there are maximally 2b pro-
totypes in d/M feature space.

At the training stage, the adaptive coding greedily finds the lo-
cally optimal code for each prototype over {−1, 1}b in O(nd22b)
time. The prototype and distribution update steps require at most
O(nd22b) time to compute the distances between training samples

and prototypes. Therefore, when using t (usually t ≤ 20) iterations
in the alternating optimization, totally O(22bndt) time is spent on
the training. Since the code space is quite limited for each subspace
(b ≤ 8), the term 22b can be treated as a constant. Therefore, it can
be considered that the training time scales linearly with respect to the
size of the training set.

When it comes to the online search, for each query point the hash
function needs O(2bd) time to compute the nearest prototype and
O(1) time for the code assignment, which is linear to the feature
dimension d as most projection based hashing methods like LSH [1]
and ITQ [3]. Furthermore, our method only utilizes a small subset
(e.g., a quarter) of codes, which directly reduce the time consumption
at the stage of hash code generation.

Compared with other lookup based methods like KMH, our
method usually owns faster speed when performing online search
in practice (see Table 1). The high efficiency of our method mainly
benefits from the adaptive coding combined with PQ, which allows
to compute and store only a small number of codewords (prototypes),
while presenting a large dictionary to maximally preserve the infor-
mation of data distribution in the original space.

4 Experiments

In this section we will evaluate the proposed adaptive binary quanti-
zation (ABQ) on large-scale nearest neighbor search, and compare it
with several state-of-the-art hashing algorithms, including the classi-
cal projection based ones like Locality Sensitive Hashing (LSH) [1],
Spectral Hashing (SH) [31], Kernelized Locality Sensitive Hashing
(KLSH) [14], Anchor Graph Hashing (AGH) [18], Iterative Quanti-
zation (ITQ) [3] and Kronecker Binary Embedding (KBE) [35], and
two representative prototype based ones: Spherical Hashing (SPH)
[6] and K-Means Hashing (KMH) [5].

• LSH: LSH generates Gaussian random projection vectors and p-
reserves the locality with high probability.

• SH: SH formulates the binary coding problem as a spectral em-
bedding in the Hamming space, and generalizes the approximated
solution for out-of-sample extension.

• KLSH: KLSH constructs randomized locality-sensitive functions
with arbitrary kernel functions. We feed it the Gaussian RBF ker-
nel ‖(xi,xj) = exp (−α‖xi − xj‖2) and 300 support samples.
The kernel parameter α is tuned to an appropriate value on each
dataset.

• AGH: AGH approximates the intrinsic structure underlying the
data based on anchors, and generates hash codes based on the an-
chor representation.

• ITQ: ITQ iteratively finds the data rotation in a subspace to mini-
mize the binary quantization error.

• KBE: KBE generates linear hash functions with a structured ma-
trix, which can achieve fast hash coding over high-dimensional
data. We adopt the optimized version of Kronecker projection.

• SPH: SPH iteratively adjusts the spherical planes to generate in-
dependent and balanced partitions, which serve as the nonlinear
hash functions based on the distances to the centers. In SPH, each
partition can generate a hash bit independently.

• KMH: KMH generates affinity affine clusters using k-means in
the partitioned subspaces of the training features, and maps each
cluster to a binary hash code for the out-of-sample coding.

5

Table 1. Hashing performance and time efficiency on SIFT-1M and GIST-1M.

MAP PH (32 BITS) TIME (128 BITS)
32 BITS 64 BITS 128 BITS r = 1 r = 2 TRAIN (S) SEARCH (S)

SIFT-1M

LSH 5.43±0.30 13.00±0.82 26.04±0.68 18.89 19.70 0.03 0.02
SH 10.70±0.58 17.84±0.37 25.30±0.59 32.20 41.93 0.25 0.25

KLSH 7.08±0.44 15.61±0.57 29.48±0.72 23.72 23.32 0.28 0.02
AGH 6.26±0.27 9.11±0.31 11.10±0.23 15.90 11.93 0.55 0.04
ITQ 9.70±0.14 20.14±0.47 33.23±0.49 28.38 22.09 5.08 0.16
SPH 8.57±0.12 18.23±0.54 31.11±0.14 26.90 30.82 8.93 0.04
KMH 11.51±0.27 22.50±0.31 32.06±0.52 35.63 40.00 680.64 0.12
KBE 6.43±0.31 14.73±0.61 27.65±0.57 20.62 16.97 3.28 0.02
ABQ 12.47±0.26 24.92±0.61 41.34±0.56 41.30 43.09 40.37 0.06

GIST-1M

LSH 1.34±0.08 3.15±0.07 5.97±0.19 5.41 7.15 0.21 0.05
SH 1.90±0.23 3.19±0.19 4.92±0.19 8.94 6.58 1.70 0.24

KLSH 2.41±0.09 5.23±0.18 9.76±0.23 9.31 10.70 0.44 0.05
AGH 2.09±0.15 3.05±0.10 3.98±0.14 5.55 4.13 0.90 0.09
ITQ 4.43±0.06 6.93±0.10 9.49±0.15 14.08 17.8 5.87 0.17
SPH 3.65±0.14 6.97±0.10 11.52±0.19 12.20 17.05 25.24 0.07
KMH 3.58±0.18 5.57±0.07 6.92±0.07 14.77 17.39 2380.61 0.15
KBE - - 6.58±0.22 - - 13.66 0.06
ABQ 4.92±0.06 10.06±0.20 16.10±0.17 23.46 17.84 46.10 0.10

4.1 Evaluation Protocols
To comprehensively evaluate the proposed method, we first employ
two well-known large-scale datasets SIFT-1M (1M) and GIST-1M
(1M) [10]. The two datasets respectively contain one million 128-
D SIFT and 960-D GIST descriptors, each of which complies with
a separate query subset. We respectively construct a training set of
10,000 random samples and a testing set of 1,000 random queries on
both datasets. Besides, we employ another two much larger dataset-
s SIFT-20M (20M) [10] and Tiny-80M (80M) [29], respectively
consisting of 20 million 128-D SIFT and 80 million 384-D GIST
features. We respectively sample 50,000 and 100,000 points as the
training sets, and 3,000 random queries as the testing ones. As to
the groundtruth of each query, we select the 1,000 Euclidean near-
est neighbors among the database on SIFT-1M, GIST-1M and SIFT-
20M, and 5,000 on Tiny-80M.

We adopt two common search schemes to evaluate the hashing
performance, i.e., Hamming distance ranking and hash table lookup.
The former ranks all candidates based on the Hamming distances
from the query, and the later treats points falling within a small Ham-
ming radius r (r ≤ 2) from the query code as the retrieved results.
As to KMH and our ABQ with product quantization, we set b = 4
for SIFT features when using less than 64 bits, and b = 8 for all oth-
er cases. In each experiment, we run 10 times in a workstation with
2.53 GHz Xeon CPU and report the averaged performance.

4.2 Results and Discussions
4.2.1 Euclidean Nearest Neighbor Search

We first evaluate all hashing methods in the task of Euclidean nearest
neighbor search over SIFT-1M and GIST-1M. We adopt both preci-
sion and recall to comprehensively study their performance. Table
1 lists the mean average precision (MAP) using Hamming distance
ranking with respect to different number of hash bits. From the ta-
ble we can observe that all methods increase their MAP performance
when using more hash bits from 32 to 128 bits. Moreover, method-
s like ITQ, SPH, KMH and our ABQ, which encode the data from

the view of clustering quantization, consistently achieve much better
performance than other methods like LSH, SH and AGH. This indi-
cates that it is a promising way to discover a particular quantization
strategy for binary hashing. Among all these methods, ABQ obtains
the best performance, and gets significant performance gains over the
best competitors, e.g., using 128 bits, 24.41% over ITQ on SIFT-1M,
and 39.76% over SPH on GIST-1M.

Figure 3 further plots the recall curves with respect to different
number of retrieved results on both datasets, where we can get the
same conclusion that ABQ performs best in all cases. The reason is
mainly that compared to the baselines where the codebook is fixed,
ABQ can adaptively generate the codebook of a varying size and well
match the binary codes to the prototypes. For the performance of
Hamming distance ranking, we compare our ABQ with the baseline
methods in terms of precision, besides recall and MAP performance
in the paper. Figure 3 also plots the precision curves with respect to
different cutting points of the retrieved result lists on SIFT-1M and
GIST-1M, where we vary the number of hash bits from 64 to 128.
We can see that our ABQ performs best in all cases with significant
performance superiority to other methods.

Besides Hamming distance ranking, hash table lookup is anoth-
er common search strategy over the hash codes. In this case, usual-
ly a small code (e.g., 32 bits for one million data) is used to avoid
the memory and time consumption derived from the exponentially
huge amount of indexing buckets. Table 1 further reports the preci-
sion within a small Hamming radius r = 1 and r = 2 (PH1 and
PH2 for short). This is also a popular evaluation metric in practice,
because with a small lookup radius, nearest neighbor search can be
efficiently completed by only locating data falling in buckets with
Hamming distance less than the radius from the query. Similarly, it
is easy to see that the ABQ outperforms the baselines with a large
margin, e.g., 15.91% and 58.84% PH1 gains over KMH respectively
on SIFT-1M and GIST-1M. Compared to SPH and KMH that also
exploit the prototype based hash functions, the encouraging preci-
sion gains obtained by ABQ indicate that our ABQ can approximate
the neighbor relations much better by encoding the data using a sub-

6

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

top retrieved samples

re
ca

ll

LSH
SH
KLSH
AGH
ITQ
SPH
KMH
KBE
ABQ

(a) 64 bits on SIFT-1M

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

top retrieved samples
re

ca
ll

LSH
SH
KLSH
AGH
ITQ
SPH
KMH
KBE
ABQ

(b) 128 bits on SIFT-1M

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

top retrieved samples

re
ca

ll

LSH
SH
KLSH
AGH
ITQ
SPH
KMH
ABQ

(c) 64 bits on GIST-1M

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

top retrieved samples

re
ca

ll

LSH
SH
KLSH
AGH
ITQ
SPH
KMH
KBE
ABQ

(d) 128 bits on GIST-1M

Figure 3. Recall performance of different hashing methods on SIFT-1M and GIST-1M.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

top retrieved samples

re
ca

ll

LSH
SH
ITQ
SPH
KMH
ABQ

(a) 64 bits on SIFT-20M

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

top retrieved samples

re
ca

ll

LSH
SH
ITQ
SPH
KMH
ABQ

(b) 128 bits on SIFT-20M

0 1 2 3 4 5

x 10
4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

top retrieved samples

re
ca

ll

LSH
SH
ITQ
SPH
KMH
ABQ

(c) 64 bits on Tiny-80M

0 1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

top retrieved samples

re
ca

ll

LSH
SH
ITQ
SPH
KMH
ABQ

(d) 128 bits on Tiny-80M

Figure 4. Recall performance of different hashing methods on SIFT-20M and Tiny-80M.

set of binary codes in Hamming space. This intuition is also visually
demonstrated in Figure 1 using a subset of SIFT-1M.

4.2.2 Nearest Neighbor Search over Large Datasets

To investigate the performance of different hashing methods over
more large-scale dataset, we adopt two of the largest datasets to-
date: SIFT-20M and Tiny-80M. Table 2 reports the precision per-
formance in terms of Hamming distance ranking and hash table
lookup. Here, due to the facts that in practice users are more con-
cerned about the top ranked results, and while computing the MAP
of the full Hamming distance ranking list is quite time-consuming
[18, 17], we present the average precision of top 1,000 returned sam-
ples (P@1,000) instead of MAP with respect to the varying code
length (32, 64 and 128). Similar to the results in Table 1, in all cases
our ABQ consistently obtains the best precision, especially on Tiny-
80M dataset with remarkable superiority, e.g., up to 45.87% perfor-
mance gain over the best competitor SPH. As to hash table lookup,
Table 2 also lists the PH1 performance using 32 bits hash table, from
which we can get a similar observation that ABQ shows a better ca-
pability of capturing the neighbor structures, and thus covers much
more nearest neighbors than all baselines.

Figure 4 respectively depicts the recall curves using 64 and 128
bits on SIFT-20M and Tiny-80M. Compared to all the baselines, our
ABQ boosts the recall with the most significant improvement when
using more hash bits, and consistently performs best in all cases. On
the real-world dataset Tiny-80M, this observation can be more ob-
vious as shown in Figure 4(c) and (d), where the recall of the top
104 result list increases largely from 14.61% to 22.93% with more
hash bits, and meanwhile the best performance among all baselines
is 17.90% achieved by SPH using 128 hash bits. This fact further
demonstrates that our ABQ can faithfully boost the overall hashing

performance in terms of precision and recall, using Hamming dis-
tance ranking or hash table lookup. As to the precision performance,
since the groundtruth number is fixed to a constant number, a similar
observation can be obtained as recall performance, which means that
the proposed method can obtain the best recall and meanwhile the
best precision performance on the two much larger datasets SIFT-
20M and Tiny-80M.

4.2.3 Groundtruth Number Effect

Prior research have pointed out that the number of groundtruth may
have effects on the performance [5]. Therefore, to illustrate the ro-
bustness of our method with respect to the groundtruth number nn,
we further conduct the experiments on SIFT-1M and GIST-1M by
varying nn in {10, 100, 1000}. In Figure 5 we compare the recall
performance of ABQ using 128 bits to those of the two state-of-the-
art methods ITQ and KMH, which archived the best performance
among all baselines as shown in prior experiments. In this figure, we
vary the groundtruth number nn on different datasets.

As we can see from the figure, when using more nearest neigh-
bors as the groundtruth (from 10 to 1000), all methods decrease the
recall performances. This is because that as the distance between the
database point and query increases, the collision probability between
them will decrease. Nevertheless, for different settings, our ABQ
consistently achieves the best performance and significantly outper-
forms others in all cases. For instance, with nn = 100 on GIST-1M,
ABQ can achieve much higher recall than ITQ and KMH, and even
better than them with nn = 10. This means that our method is very
robust to the task of nearest neighbor search. Besides, in all these ex-
periments we adopt the same parameter settings, which indicates that
the proposed ABQ is practical without complex parameter tuning.

7

Table 2. Hashing performance on SIFT-20M and Tiny-80M.

SIFT-20M TINY-80M
P@1,000 PH (32 BITS) P@1,000 PH (32 BITS)

32 BITS 64 BITS 128 BITS r = 1 r = 2 32 BITS 64 BITS 128 BITS r = 1 r = 2

LSH 4.34 11.26 22.81 9.86 8.03 0.75 2.18 4.24 0.83 0.51
SH 8.00 13.91 20.19 22.70 17.34 2.77 5.12 9.06 3.37 1.71
ITQ 8.48 17.69 28.47 20.18 14.69 5.25 9.99 14.10 10.59 7.47
SPH 6.06 14.06 25.09 14.72 10.10 4.53 10.90 20.03 9.51 5.67
KMH 8.29 16.90 26.08 22.54 16.18 5.31 9.41 11.92 11.64 7.50
ABQ 8.95 18.92 31.86 25.97 17.59 7.51 15.93 26.56 12.67 7.57

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

top retrieved samples

re
ca

ll

ITQ (nn=1000)
KMH (nn=1000)
ABQ (nn=1000)
ITQ (nn=100)
KMH (nn=100)
ABQ (nn=100)
ITQ (nn=10)
KMH (nn=10)
ABQ (nn=10)

(a) recall on SIFT-1M

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

top retrieved samples

re
ca

ll

ITQ (nn=1000)
KMH (nn=1000)
ABQ (nn=1000)
ITQ (nn=100)
KMH (nn=100)
ABQ (nn=100)
ITQ (nn=10)
KMH (nn=10)
ABQ (nn=10)

(b) recall on GIST-1M

Figure 5. Recall performance of different hashing methods with respect to
different number of groundtruth (10, 100, 1000) on SIFT-1M and GIST-1M.

4.2.4 Efficiency Issue

Figure 2 shows that the proposed ABQ can converge fast in less than
10 iterations. Therefore, in practice, the algorithm can achieve effi-
cient training and support the large-scale learning. This is consistent
with our complexity analysis in Section 3.4.3, e.g., the training time
scales linearly to the size of the training set.

Table 1 further lists the offline training time and online search time
when using 128 hash bits on SIFT-1M and GIST-1M. We can see
that usually the iterative binary quantization methods like ITQ, SPH,
KMH and our ABQ take more training time than the others. This
is mainly due to the difficulty of finding an optimal coding solution
that can align the Hamming space with the original one. Among these
methods, our ABQ costs much less time than KMH, while gives the
best performance with a little more training time than SPH and ITQ.

Moreover, at the online search stage, only a small set of prototypes
(smaller than 2b, b ≤ 8 in each subspace) will be checked, and thus
the hashing time is very close to the prior projection based methods.
Namely, it can support the real-time nearest neighbor search as the
existing methods do.

5 Conclusions
Inspired by our observation that in prototype based hashing there
might exist a better coding solution that only utilizes a small sub-
set of binary codes instead of the complete set, this paper proposed
an adaptive binary quantization method that jointly pursues a set of
prototypes in the original space and a subset of binary codes in the
Hamming space. The prototypes and the codes are correspondingly
associated and together define the hash function for small hash codes.
Our method enjoys fast computation and the capability of generating
long hash codes in product space, with discriminative power for near-
est neighbor search. The significant performance gains over existing
methods were obtained in our extensive experiments on several large
datasets, which encourage us to further study the effective coding for
binary quantization.

6 Acknowledgment
We would like to thank the referees for their comments, which helped
improve this paper considerably. This work was partially support-
ed by the National Natural Science Foundation of China (61402026,
71322104, and 71531001), the Foundation of the State Key Labora-
tory of Software Development Environment (SKLSDE-2016ZX-04),
and National High Technology Research and Development Program
of China (SS2014AA012303).

REFERENCES
[1] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni,

‘Locality-sensitive hashing scheme based on p-stable distributions’, in
SCG, pp. 253–262, (2004).

[2] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun, ‘Optimized product
quantization’, IEEE TPAMI, 36(4), 744–755, (April 2014).

[3] Yunchao Gong and S. Lazebnik, ‘Iterative quantization: A procrustean
approach to learning binary codes’, in IEEE CVPR, pp. 817–824,
(2011).

[4] Junfeng He, Jinyuan Feng, Xianglong Liu, Tao Cheng, Tai-Hsu Lin,
Hyunjin Chung, and Shih-Fu Chang, ‘Mobile product search with bag
of hash bits and boundary reranking’, in IEEE CVPR, pp. 3005–3012,
(2012).

[5] Kaiming He, Fang Wen, and Jian Sun, ‘K-means hashing: An affinity-
preserving quantization method for learning binary compact codes’, in
IEEE CVPR, pp. 2938–2945, (2013).

[6] Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-
Eui Yoon, ‘Spherical hashing’, in IEEE CVPR, pp. 2957–2964, (2012).

8

[7] Long-Kai Huang, Qiang Yang, and Wei-Shi Zheng, ‘Online hashing’,
in IJCAI, pp. 1422–1428, (2013).

[8] Piotr Indyk and Rajeev Motwani, ‘Approximate nearest neighbors: to-
wards removing the curse of dimensionality’, in ACM STOC, (1998).

[9] Prateek Jain, Sudheendra Vijayanarasimhan, and Kristen Grauman,
‘Hashing Hyperplane Queries to Near Points with Applications to
Large-Scale Active Learning’, in NIPS, 928–936, (2010).

[10] Herve Jegou, Matthijs Douze, and Cordelia Schmid, ‘Product quantiza-
tion for nearest neighbor search’, IEEE TPAMI, 33(1), 117–128, (Jan-
uary 2011).

[11] Qing-Yuan Jiang and Wu-Jun Li, ‘Scalable graph hashing with feature
transformation’, in IJCAI, pp. 2248–2254, (2015).

[12] Zhongming Jin, Yao Hu, Yue Lin, Debing Zhang, Shiding Lin, Deng
Cai, and Xuelong Li, ‘Complementary projection hashing’, in IEEE
ICCV, pp. 257–264, (2013).

[13] Weihao Kong and Wu-Jun Li, ‘Isotropic hashing’, in NIPS, pp. 1–8,
(2012).

[14] B. Kulis and K. Grauman, ‘Kernelized locality-sensitive hashing for
scalable image search’, in IEEE ICCV, (2009).

[15] Brian Kulis and Trevor Darrell, ‘Learning to hash with binary recon-
structive embeddings’, in NIPS, pp. 1–8, (2009).

[16] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. Dick, ‘Learning hash
functions using column generation’, in ICML, (2013).

[17] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang, ‘Discrete graph
hashing’, in NIPS, (2014).

[18] Wei Liu, Jun Wang, Sanjiv Kumar, and Shih-Fu Chang, ‘Hashing with
graphs’, in ICML, pp. 1–8, (2011).

[19] Wei Liu, Jun Wang, Yadong Mu, Sanjiv Kumar, and Shih-Fu Chang,
‘Compact hyperplane hashing with bilinear functions.’, in ICML,
(2012).

[20] Xianglong Liu, Bowen Du, Cheng Deng, Ming Liu, and Bo Lang,
‘Structure sensitive hashing with adaptive product quantization’, IEEE
TCYB, PP(99), 1–12, (2015).

[21] Xianglong Liu, Xinjie Fan, Cheng Deng, Zhujin Li, Hao Su, and
Dacheng Tao, ‘Multilinear hyperplane hashing’, in IEEE CVPR,
(2016).

[22] Xianglong Liu, Junfeng He, Cheng Deng, and Bo Lang, ‘Collaborative
hashing’, in IEEE CVPR, (2014).

[23] Xianglong Liu, Junfeng He, Bo Lang, and Shih-Fu Chang, ‘Hash bit
selection: a unified solution for selection problems in hashing’, in IEEE
CVPR, (2013).

[24] Xianglong Liu, Lei Huang, Cheng Deng, Jiwen Lu, and Bo Lang,
‘Multi-view complementary hash tables for nearest neighbor search’,
in IEEE ICCV, (2015).

[25] Xianglong Liu, Yadong Mu, Bo Lang, and Shih-Fu Chang, ‘Mixed
image-keyword query adaptive hashing over multilabel images’, ACM
TOMM, 10(2), 22:1–22:21, (February 2014).

[26] Yadong Mu, Gang Hua, Wei Fan, and Shih-Fu Chang, ‘Hash-svm: S-
calable kernel machines for large-scale visual classification’, in IEEE
CVPR, (2014).

[27] Mohammad Norouzi and David J. Fleet, ‘Cartesian k-means’, in IEEE
CVPR, pp. 2938–2945, (2013).

[28] Maxim Raginsky and Svetlana Lazebnik, ‘Locality-sensitive binary
codes from shift-invariant kernels’, in NIPS, pp. 1–8, (2009).

[29] Antonio Torralba, Rob Fergus, and William T. Freeman, ‘80 million
tiny images: A large data set for nonparametric object and scene recog-
nition’, IEEE TPAMI, 30(11), 1958–1970, (2008).

[30] Qifan Wang, Zhiwei Zhang, and Luo Si, ‘Ranking preserving hashing
for fast similarity search’, in IJCAI, pp. 3911–3917, (2015).

[31] Yair Weiss, Antonio Torralba, and Rob Fergus, ‘Spectral hashing’, in
NIPS, pp. 1–8, (2008).

[32] Botong Wu, Qiang Yang, Wei-Shi Zheng, Yizhou Wang, and Jingdong
Wang, ‘Quantized correlation hashing for fast cross-modal search’, in
IJCAI, pp. 3946–3952, (2015).

[33] Bin Xu, Jiajun Bu, Yue Lin, Chun Chen, Xiaofei He, and Deng Cai,
‘Harmonious hashing’, in IJCAI, pp. 1820–1826, (2013).

[34] Felix Yu, Sanjiv Kumar, Yunchao Gong, and Shih-Fu Chang, ‘Circulant
binary embedding’, in ICML, (2014).

[35] Xu Zhang, Felix X. Yu, Ruiqi Guo, Sanjiv Kumar, Shengjin Wang, and
Shih-Fu Chang, ‘Fast orthogonal projection based on kronecker prod-
uct’, in IEEE ICCV, (2015).

9

