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Abstract

Recent years have witnessed the success of the e-
merging hashing techniques in large-scale image
retrieval. Owing to the great learning capacity,
deep hashing has become one of the most promis-
ing solutions, and achieved attractive performance
in practice. However, without semantic label infor-
mation, the unsupervised deep hashing still remains
an open question. In this paper, we propose a novel
progressive generative hashing (PGH) framework
to help learn a discriminative hashing network in an
unsupervised way. Different from existing studies,
it first treats the hash codes as a kind of semantic
condition for the similar image generation, and si-
multaneously feeds the original image and its codes
into the generative adversarial networks (GANs).
The real images together with the synthetic ones
can further help train a discriminative hashing net-
work based on a triplet loss. By iteratively inputting
the learnt codes into the hash conditioned GAN-
s, we can progressively enable the hashing network
to discover the semantic relations. Extensive exper-
iments on the widely-used image datasets demon-
strate that PGH can significantly outperform state-
of-the-art unsupervised hashing methods.

1 Introduction

Hashing technique has been widely known for its success-
ful applications to many nearest neighbor search tasks, such
as large-scale visual search [He et al., 2012; Liu ef al., 2013;
Wang et al., 2015], machine learning [Mu et al., 2014], rec-
ommendation system [Liu ef al., 2014b], etc. It works based
on the concept of Locality-Sensitive Hashing (LSH), which
guarantees that the nearest neighbors share the similar bina-
ry codes, and thus enables fast search with compressed s-
torage over gigantic databases. In the literature, LSH was
first introduced by Indyk, and further developed in [Datar
et al., 2004], which proposed the popular random projection
paradigm. The projection based hashing usually generates the
binary codes by first linearly projecting the data along certain
directions and then quantizing the projections to binary bits.

*Corresponding Author

Due to the simple form and efficient computation, many
following studies have attempted to further improve the dis-
criminative power of the hash codes, and learnt the projection
based hash functions by leveraging the information contained
in the data [Weiss er al., 2008; Gong and Lazebnik, 2011;
Wang et al., 2017; Liu et al., 2014b; Wang et al., 2018;
Kong and Li, 2012; Yu et al., 2014; Liu et al., 2014a;
Shen et al., 2015; Wang et al., 2014]. Despite the progress in
the linear projection based hashing, these methods still can-
not well capture the nearest neighbor relations using the bi-
nary codes, mainly due to the fact that the shallow structures
lack the capability of modelling complex data distribution
[He ez al., 2013]. Although the nonlinear mapping techniques
like kernel can help uplift the data into an informative s-
pace [Raginsky and Lazebnik, 2009; Kulis and Darrell, 2009;
Liu et al., 2011], they are usually time-consuming, and mean-
while still fail to exploit the underlying data structures using
the linear shallow model.

As the deep convolutional neural network yield break-
through performance on many computer vision tasks, there
are several recent studies having been devoted to learning
deep hash functions. In these deep network based hashing
methods, the hash functions can directly encode the raw im-
ages into their binary codes in an end-to-end way. To learn
the discriminative hash function, usually we have to train the
deep model using a sufficient number of labeled data, which
largely limits the power of the deep network based hashing.

There are quite a few deep network based hashing studies
that mainly focused on the more generic unsupervised set-
tings, due to the difficulty of training the hashing networks.
DH [Liong et al., 2015] and Deepbit [Lin ef al., 2016] serve
as the pioneering work that learnt the nonlinear end-to-end
hash function under independent and balanced constraints on
the generated binary codes. Without any supervision infor-
mation, both methods have shown the encouraging perfor-
mance in image retrieval. More recently, in [Song, 2017]
the more powerful Generative Adversarial Networks (GANSs)
[Goodfellow er al., 2014] have been further adopted to gen-
erate binary representation, which achieved very promising
performance compared to the other unsupervised deep hash-
ing methods, but heavily relies on the pre-defined similarity
matrix as the side information.

To exhaustively exploit the power of GAN itself, this paper
proposes a novel progressive generative adversarial frame-
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Figure 1: The architecture of our proposed PGH model

work to help learn a discriminative deep hashing network in
an unsupervised way. Very different from [Song, 20171, our
model employs a progressive way to gradually generate more
discriminative hash codes, based on the generated semantic
and realistic images by GAN. Specifically, for each image we
regard its binary code generated by any weak hashing method
as a kind of weak semantic condition for the similar image
generation, and simultaneously feed it and the original im-
age into the designed GAN to generate the synthetic image.
With the real images and their synthetic ones, we can fur-
ther train a discriminative hashing network by minimizing a
triplet loss over them, which can generate more informative
hash codes that can well preserve the semantic relations. Pro-
gressively, the output hash codes can serve as the new input
to the GAN, guiding the following repeated learning process,
towards much better hash codes.

To the best of our knowledge, this is the first work that truly
pursues deep hash functions in the generative adversarial net-
works under the unsupervised setting and achieves the state-
of-the-art performance over several popular image datasets.

2 Progressive Generative Hashing

In this section, we will elaborate our Progressive Genera-
tive Hashing (PGH) model. Before that we first introduce the
basic notations used through this paper.

Supposing we have n training images in the training set
X = {x4li = 1,...,n}, our goal is to learn a deep hash-
ing network H without any label information. The hashing
network H can encode each input image x; into a compact
binary code b; € {0,1}* in an end-to-end way, where k
is the code length. Intuitively, the generated binary codes
B = {b;|i = 1,...,n} are expected to preserve the simi-
larity relationship among the images. To achieve this goal,
we employ a generative adversarial architecture, consisting
of a generative network G and a discriminative network D,
to generate complementary images for training H. Figure 1
illustrates the architecture of the proposed PGH method.

2.1 Hash Conditioned GANs

Learning a deep hashing network usually requires suffi-
cient training images that can convey the intrinsic distribu-
tion. Without label information, to learn a discriminative H,
we have to resort to certain way to synthesize complementary
images that can uncover the underlying structure of the data,
together with the original training images.

The generative adversarial architecture has been proved to
be a promising solution, owing to its surprising capability of
generating the realistic images. However, without any guid-
ance to the desired hash codes, such a solution might diverge
from the goal due to its unstable training. Since most of ex-
isting hashing methods attempted to preserve the neighbor re-
lations, the generated compact hash codes, which can distin-
guish the similar data with a large probability, can be viewed
as a kind of weak semantic information.

Based on the fact, we propose a hash conditioned gener-
ative adversarial networks, where both G and D are condi-
tioned on certain binary codes generated by any weak unsu-
pervised hashing method. This is similar to the idea used
in conditional GANs [Mirza and Osindero, 2014] in the lit-
erature, where their generator and discriminator are usually
conditioned on some semantic information like class labels.
Our model largely differs from them by simply utilizing the
easily obtained weak hash codes without heavy requirements
on the strong semantic clues.

Even though such inferior binary codes may not be dis-
criminative enough for image retrieval tasks, they can provide
auxiliary information for generative adversarial networks to
produce plausible and semantically similar images. Besides,
they can bring extra information that can supervise and thus
stabilize the hard-to-train generative adversarial network.

In particular, for a training image x;, the generator network
G takes a random noise vector z; and an initial weak binary
code b; as the input and generates a synthetic image

)_(i = G(Zl|bl)

Such synthetic images should preserve the original similarity
of the input hash codes. Namely, if the Hamming distance
between two binary codes b; and b; is greater than that be-
tween b; and by, then the synthetic image X; should be more
similar to X; than x;..

For the discriminator D, the real image x; and the gen-
erated one x; will be respectively combined with the corre-
sponding binary codes b; as the input. D will evaluate the
probability that the input comes from the training data rather
than G. Therefore, the whole GANs can be trained in a two-
player min-max game. Specifically, given an image sample
x; and its weak binary code b;, the objective function of the
two-player min-max game would be:

mci;nmle)xx Lp. ¢ = logD(x;|b;)+log(1-DoG(z;|b;)) (1)

2.2 Deep Hashing Network

In our paper, we mainly focus on the unsupervised setting
without any label information. Therefore, to learn a discrim-
inative H, we only resort to the training data and its inherent
structure. Fortunately, the hash conditioned GANs are able
to discover the structure and thus provide more explicit in-
formation by the generated images. Since it is reasonable to
expect that a real image x; is more similar to its correspond-
ing generated image X; than other synthetic images, we can
form real-synthetic triplets using the original real images and
their generated images.

Specifically, with the help of our hash conditioned GAN-
s we can easily obtain a set of real-synthetic triplets, where



each triplet (x;,X;,X;) consists of a real image x;, its syn-
thetic one X;, and any other synthetic one X; (j # ¢). Note
that X, = G(z;|b;), which means it is synthesized by gener-
ator network G conditioned on the weak binary code of x;,
and thus has much stronger similarity with x; than any X;
generated upon the different images and hash codes.

Intuitively, the desired hash codes should be able to pre-
serve the relative similarities among the images in the triplet.
In this way, we can define a triplet loss that has also been suc-
cessfully applied in prior research [Qiu et al., 2017], which
is defined over the output binary codes b;, b; and b; corre-
sponding to the training image triplet (x;, X;, X;)

max (0, vk — [[b; — by l3 + b — bill),

where ||| represents Hamming distance and the parameter
v controls the minimum Hamming distance margin between
the similar and dissimilar image pairs.

To pursue such discriminative hash codes, we can learn the
hashing network H by minimizing the triplet loss. This can
drive H to possess strong capability of distinguishing the im-
ages with slight changes. Since the hash codes are discrete,
we simply adopt the following quantization solution to gen-
erate hash codes using H:

1 1 1
b; = 5580 (H(xl) 2) + 5 2)
where the output of H belongs to [0, 1].

Since directly minimizing h(b;, b;, b;) is quite difficult,
mainly due to the involvement of the discrete binary codes.
To approximately solve the problem, we first can naturally
relax the problem by replacing b; with H(x;), and simulta-
neously turn Hamming distance to the [ distance. Therefore,
the triplet loss can be defined as

h(Xi,Xi,ij) =
max(0, vk — [H(x;) — H(x;)| + [H(x;) — H(x)]),

To further force the relaxation to be consistent with the dis-
crete hash codes, we need to minimize the quantization loss

(i) — byl + [[H(x:) — bill3 + [H(x;) — byll3

Based on the two types of loss, we can learn the deep hash-
ing network by solving the following problem

min Lyg = Z hixi, %i, X;5) + q(xi, Xi, X;)
H,B,B L
i,j#i A3)
s.t. B,B € {0,1}F*"

which can be efficiently solved by alternating the optimiza-
tion of the subproblem with respect to each variable while
fixing the others. Note that besides generating hash codes,
the hashing network together with D can also help improve
G for better image generation.

2.3 Progressive Architecture

The initial input binary codes might not be able to accu-
rately characterize the inherent relations among the training

images. However, with the triplet loss guiding deep hashing
network H, it is possible for us to pursue better binary codes
by absorbing more information from both the real images and
the synthetic ones. We will later show this fact indeed holds
in our experimental part.

Under the assumption that the quality of the binary codes
can be improved through our hash conditioned GANs and the
hashing network, we can naturally introduce a progressive ar-
chitecture to feed the improved hash codes into the networks
again, and thus continuously increase the code quality, estab-
lishing a learning cycle until converging. In the progressive
architecture, as shown in Figure 1, the binary codes connect
the two successive learning cycle, i.e., the output hash ones,
learnt upon the input weak ones in the last round, will be re-
turned as the new input to start the next round learning. By
repeating such process, we gradually achieve more realistic
image generation and a more discriminative hash function.

Specifically, at the ¢-th loop we input the weak binary
codes Bt—1) ¢ = 1,...,T to G and D, and output new bina-
ry ones B(Y) by H. We start the progressive learning by B(®)
generated by any weak hashing method. Then, for the ¢-th
loop, the overall objective function in our progressive archi-
tecture, with respect to current networks G®, D®)_ H() and
the desired binary codes B(t), should be

min max Low gw + ALpw qo
G® H® D® B®) B(®) D®.G HI®.G 4)

s.t. B,B € {0, 1}}F*"

2.4 Optimization Details

In the above problem the desired networks and the binary
codes can be easily optimized one by one iteratively. How-
ever, to achieve fast convergence and satisfying performance,
we also should pay much attentions to the training order of the
different networks. Since the synthetic images play an impor-
tant role on the hashing network learning, to guarantee their
quality, practically we make sure hash conditioned generative
adversarial networks (G and D) are adequately trained first.
This can be completed by solving the subproblem in Equation
(1) without considering the effect of hashing network. After
that, we can simultaneously take the three networks into con-
sideration in the next training process by solving the problem
in Equation (4) for each progressive stage. Algorithm 1 lists
the main steps of our PGH method.

In the above training process, we believe the hashing net-
work could extract certain semantic information, which in
turn will help stabilize and improve the performance of the
generator. We find that when training generator G in our
method, to emphasize the semantic similarity between real
images and synthetic ones, replacing the triplet loss with the
following loss can further the performance in practice:

Lic =Y IHY(x;) — HED 0 GO (b)) 3
=1

3 Experiments

In this section, we will evaluate the proposed progressive
generative hashing (PGH) method in the task of image re-
trieval. We adopt two widely used large image datasets, i.e.,



Algorithm 1 Progressive Generative Hashing (PGH)

Input: training set ¥ = {x;|¢ = 1,...,n}, weak codes set B =
{bili=1,...,n}
Output: non-linear parameters set YWp, Wg and Wq
for number of progressive loops do
for number of training epochs do
for k; steps do
sample minibatch of m noise {z1, 22, ..., 2m}
sample minibatch of m examples {z1, z2,...,Zm}
optimize WWp to max Lp,c

end for

for k> steps do
construct minibatch of m tuples {(x;,X;,X;)}
optimize Wy to rrhin Lu,c

end for

sample minibatch of m noise {z1, 22, ..., 2m }
sample minibatch of m examples {z1,z2,...,Zm}
construct minibatch of m tuples {(x;, X, X;)}
optimize Wg to m&n Lp,c+ Aluc

end for
update B with outputs of H
end for
Return Wp, Wy and Wg
Standard gradient-based optimization methods can be used to
learn Wp, Wy and Wqa

MNIST [LeCun et al.,, 1998] and CIFAR-10 [Krizhevsky,
2009]. MNIST is a famous handwritten digits dataset con-
taining a training set of 60,000 examples, and a test set of
10,000 examples. It has been widely used for computer vi-
sion tasks to test the generalization of different algorithms.
CIFAR-10 dataset consists of 60,000 32 x 32 color images
in 10 classes, with 6,000 images per class. There are 50,000
training images and 10,000 test images, respectively.

Since we mainly focus on the unsupervised learning, we
compare our method only with the state-of-the-art unsuper-
vised hashing methods, including (1) the shallow models:
Local Sensitive Hashing (LSH) [Datar et al., 20041, Itera-
tive Quantization (ITQ) [Gong and Lazebnik, 20111, Spectral
Hashing (SH) [Salakhutdinov and Hinton, 2009] and Spher-
ical Hashing (SPH) [Heo et al., 2015]; (2) the deep models:
Deep Hashing (DH) [Liong et al., 2015] and Deepbit [Lin et
al., 2016]. Both DH and Deepbit are the most recent unsu-
pervised deep hashing solutions. Note that DH doesn’t take
advantages of the deep convolutional neural network, which
simply generates hash codes based on the handcrafted fea-
tures. We also compare our method with BGAN [Song, 2017]
that also utilizes GANs for hashing, but heavily relies on the
similarity matrix derived from certain type of features. To
make the comparison fair under the settings without any su-
pervised information, for DH, BGAN and PGH we adopt the
same type of low-level features, instead of deep features like
ResNet trained in a supervised way.

3.1 Implementation and Evaluation Protocols

We implement our PGH model using Pytorch, whose archi-
tecture is shown in Figure 1. For the hash conditioned GANSs,
we adopt a combination of DCGAN and CGAN, where the
former improves the quality of synthetic images while the lat-

[ mAP (%)

METHODS [ =16 | b=32 [ G=06d
LSH+PIXEL 20.52 26.02 32.14
ITQ+PIXEL 39.57 42.98 44.88
SH+PIXEL 26.60 35.92 25.01
SPH+PIXEL 26.49 31.03 35.59
LSH+GIST 22.75 29.08 33.95
ITQ+GIST 38.64 43.12 45.66
SH+GIST 29.76 30.55 28.50
SPH+GIST 31.15 35.57 39.27
DH+GIST 43.14 44.94 46.74
DEEPBIT 28.18 32.02 44.53
BGAN+GIST 40.26 40.78 51.61
PGH+GIST 39.20 66.95 67.95

Table 1: Performance of different methods on MNIST.

mAP (%)

METHODS } b=16 [ b=32 | b=06d
LSH+GIST 12.78 13.97 15.07
ITQ+GIST 16.36 17.00 17.58
SH+GIST 13.06 12.92 13.07
SPH+GIST 14.63 15.14 15.86
LSH+VGG 15.38 17.17 20.73
ITQ+VGG 25.51 26.57 28.23
SH+VGG 17.29 16.44 16.56
SPH+VGG 18.97 21.26 22.97
DH+GIST 16.17 16.62 16.96
DEEPBIT 19.43 24.86 27.73
BGAN+GIST 19.15 19.42 21.60
PGH+GIST 33.40 33.98 32.40

Table 2: Performance of different methods on CIFAR-10.

ter provides ability of generating similar and dissimilar sam-
ples to specific image. We comply with the practical advices
in [Radford et al., 2015] and [Mirza and Osindero, 2014], and
make certain necessary modification to fit our problem. As to
the training, in all experiments we employ the Adam optimiz-
er with a mini-batch size of 64. Besides, we fix the learning
rate and the momentum to 0.0002 and 0.9, respectively. For
the hashing network, we simply adopt the popular VGGNet
[Simonyan and Zisserman, 2014], where to generate hash
codes we replace the softmax function after the last fully-
connected layer with the quantization function in Equation
(2). Also we choose the sigmoid as our active function, and
the stochastic gradient descent algorithm for the optimization.
As to the utilization, on CIFAR-10 we borrow the pre-trained
weights from the 16 layers VGGNet, which is trained on the
similar large scale natural image dataset ImageNet. We set
the start learning rate to 0.0003, and decrease it by 10% ev-
ery 10 epochs. The mini-batch size is 32, and each image is
normalized and rescaled to 224 x 224 as the network input.
Different from CIFAR-10, on MNIST we train the hashing
network from scratch. The start learning rate is 0.002, de-
creased by 10% every 20 epochs. Here, we use mini-batch
size of 64, and all images are normalized to [—1, 1].

To comprehensively evaluate the hashing performance of
different methods, we adopt two common search schemes
including the Hamming distance ranking and the hash table
lookup. The Hamming distance ranking places those points
that have small Hamming distances to the query on the top of
the result list. We report the ranking performance on this list
in terms of mean average precision (mAP). Hash table lookup
works like the popular inverted indexing, where the points
falling within a small Hamming radius r (usually » < 2 for
efficiency) from the query code are retrieved as the final re-
sults. We choose the widely used precision within Hamming
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radius 2 (PH2) to evaluate the search performance.

3.2 Results and Discussions

We will first investigate the performance of our PGH mod-
el on image search, compared to the state-of-the-art unsuper-
vised hashing methods. Then we will analyze our model from
the aspects of the convergence and progressive improvement.

Image Search Performance

In the image search experiments, we compare our method
with the shallow hashing methods using the hand-crafted fea-
tures and deep features. On CIFAR-10 we adopt both 512-D
GIST features and 4096-D deep features extracted by VG-
GNet. On MNIST, since deep features are not applicable
to handwriting digits in the unsupervised setting, we simply
choose the pixel-level features and the GIST features.

Table 1 reports the mAP performance with respect to dif-
ferent number of hash bits. From the table, we can observe
that the shallow hashing methods based on pixel features and
GIST features achieve comparable performance at a similar
level in most cases, compared to the deep methods. Besides,
it should be noted that the performance of ITQ is quite close
to the deep hashing methods including DH, Deepbit and B-
GAN. Since DH also takes GIST features as its input, we
believe that the low-level hand-crafted features lack the ca-
pability of describing the underlying structure of the digital
images in MNIST. Besides, we find that Deepbit also fails to
obtain significant performance gains over the shallow hashing
methods. BGAN can achieve satisfying performance in most
cases, guided by a similarity matrix based on GIST features.
Our PGH also relies on GIST features, and by inputting the
hash codes generated by ITQ on GIST features, it can con-
sistently perform best in most cases. The result proves that
PGH owns encouraging ability to pursue more discriminative
codes than the input weak ones in the progressive learning.

Loss

w S
Loss

o

N

o 1 2 3 4 5 0 1 2 3 4 5
#iteration / 10% #iteration / 10%

(a) MNIST (b) CIFAR-10
Figure 4: Training loss of PGH on MNIST and CIFAR-10.
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Figure 5: The progressive learning curves of PGH.

We further study the performance of different methods on
CIFAR-10. In this experiments, we first compare the deep
hashing methods with the shallow ones with hand-crafted fea-
tures and deep ones. As the results show, the shallow models
with deep features can beat the deep ones, and significant-
ly outperform them with hand-crafted features. For example,
ITQ with VGG features can perform better than Deepbit and
BGAN in all cases. This phenomenon indicates that the con-
ventional unsupervised hashing methods can also work well
if equipped with a good feature representation. On the other
hand, it also means that existing deep hashing methods have
not fully exploited the hashing nature. From this point of
view, we believe that our PGH serves as a novel alternative to
discover a discriminative coding solution that can capture the
semantic differences between the images, mainly relying on
the image triplets generated by the hash conditioned GANSs.
Therefore, on CIFAR-10 PGH obtains the best performance,
with significantly performance gains over the second best.

Model Analysis

Besides the Hamming distance ranking performance, Fig-
ure 2 also depicts the PH2 performance on MNIST and
CIFAR-10. Here, PGH gives a relatively lower performance
when using short binary codes. But we can see that it can
largely increase its precision when using more hash bits while
others drop quickly, which means that PGH can preserve
the semantic relations using the progressively enhanced hash
codes, mainly owing to the realistic synthetic images. We will
further illustrate this point in the following experiments.

In Figure 3 we show several synthetic images generated
by our hash conditioned GANs on MNIST and CIFAR-10,
where each subfigure presents the real images and the cor-
responding synthetic ones respectively at the top and bottom
rows. We can easily observe that our framework can provide
images with the same semantic but slightly varied, which cer-
tainly helps enrich the neighbor relations for the code learning
and improve the robustness of the hashing network.
Convergence. Traditional GANs usually suffer from the un-
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METHODS — — m:‘i(go) — — the prior experiments that our PGH can synthesize semanti-
TSHTGIST 507 3503 39,93 3736 3718 cally realistic images, which together with the original train-
ITQ+GIST 17.58 27.04 30.49 31.81 32.40 ing images are able to discover the underlying semantic sim-
ITQ+vGG 28.23 32.93 33.30 - - ilarities among the data. To further verify this conclusion,

Table 3: The progressive performance using different input hash
codes on CIFAR-10.

stable convergence in practice. Here, our hash conditioned
GANSs enjoy stable and fast convergence at the training stage.
This is mainly because the weak hash codes can help avoid
the undesired mode collapse and thus lead the networks to ap-
proximate the true semantic distribution of the images. Figure
4 shows the convergence curves on MNIST and CIFAR-10,
where we mainly depict the variation tendency after the three
networks are trained at the same time.
Progressive Improvement. Besides the fast convergence of
hash conditioned GANs, we also want to investigate the prop-
erty of our whole progressive learning framework. To demon-
strate PGH can progressively learn more discriminative hash
codes based on the weak hash codes, in Figure 5 (a) and (b)
we respectively show how the performance varies on MNIST
and CIFAR-10 using 64 bits, with respect to the number 7" of
the progressive iterations. It is obvious that on both datasets
the mAP performance increases significantly when we iter-
atively input the learnt hash codes of last iteration into the
current hash conditioned GANSs. Therefore, we can conclude
that our PGH can learn desired hash codes quickly based on
the weak ones and improve the performance gradually. In
practice, usually the progressive process can stop in 4-5 iter-
ations when it reaches the convergency.

Intuitively, different input hash codes provide differen-
t condition information for image generation using hash con-
ditioned GANs. For example, ITQ with the VGG deep fea-
tures will transmit more rich semantics into the model than
LSH with low level GIST features. To check the effect of the
input codes, we consider three different but typical initial in-
put hash codes to start PGH learning. In Table 3, we report
the progressive performance of different input hash codes on
CIFAR-10. First, we observe that in all cases PGH consis-
tently improves the performance iteration by iteration. More
importantly, even though the performance of LSH with GIST
features is inferior to that of ITQ with VGG features, we can
notably see that all the three types of codes almost converge
to the same level of performance in a very few iterations. This
means that our model doesn’t highly depend on the initial in-
put, but can perform robustly and steadily in practice.
Semantic Discovery. We have pointed out and validated in

In Figure 6 (a)-(c) we respectively show the distributions of
the 10 classes on CIFAR-10 in 2-D space by PCA, accord-
ing to the 64-bit hash codes generated by ITQ, Deepbit and
our PGH. In these figures, each circle in different color cor-
responds to a unique semantic class, and its size indicates the
variance of hash codes belonging to the class. Compared with
ITQ and Deepbit, the best shallow and deep hashing methods
as we know, our PGH has the largest inter-similarities among
images in the same class, i.e., the average code variance of
ten classes is 0.1578, which is much smaller than 0.2141 of
ITQ and 0.2010 of Deepbit. Moreover, it can discover the
latent semantic similarities among different classes as we ex-
pect. Compared with ITQ and Deepbit, PGH owns much
stronger capability to distinguish the dissimilar images such
as ‘bird’ images from ‘deer’ and ‘horse’ with relatively large
distances in Figure 6(c), and exploits the semantically simi-
lar ones, such as ‘automobile’ and ‘truck’, ‘deer’ and ‘horse’,
etc., with close hash codes. This further proves that our pro-
gressive generative strategy can significantly boost the hash-
ing performance even without supervision information.

4 Conclusion

In this paper we presented a novel unsupervised progres-
sive generative hashing (PGH) architecture, which exploit-
s the power of hash conditioned GANs and the progressive
learning. The hash conditioned GANs take weak binary
codes to guide image generation, and help train a discrimina-
tive hash function based on the triplet loss defined over both
real and synthetic images. Through progressively feeding the
learned binary codes into the network, we can obtain better
deep hash function gradually. Experiments and analysis have
demonstrated that PGH can discover the semantic relations,
and thus achieve the state-of-the-art performance.
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