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01 BACKGROUND

NNS Solutions

• Hash-based Approximate Solution
– Encode data into hash codes

– Significantly reduce the storage, constant/sublinear query time

large distancesmall distance

1B dataset 10K dim., using 64 bit codes

needs 8GB storage 40TB，search in Hamming distance 13s 15hrsX X



02 RELATED WORK

Generative adversarial networks

GAN:

CGAN:

GAN CGAN



02 RELATED WORK

Binary Generative Adversarial Networks for Image Retrieval

 Architecture

features Resnet GIST

mAP（%） 53.10 19.42



03 Hash-conditioned GANs

Our PGH

 Generating semantically similar images conditioned on weak binary codes



03 Our PGH

Triplet Hashing

 Learning hash codes which can preserve relative similarities among the images in the triplet 

 replacing the discrete binary codes with continuous value

 Forcing the relaxation to be consistent with the discrete hash 

codes

 The overall loss function of deep hashing network H 



03 Our PGH

Progressive Architecture

 Feeding the learned binary codes into the 
hash conditioned GANs

 Progressively obtaining the improved hash 
codes until converging



04 Search Performance

Experiments

 On MNIST:

 On Cifar:

 shallow methods based on different features 
achieve comparable performance.

 the performance of ITQ is close to deep methods

 shallow methods with deep features significantly 
outperform them with hand-crafted features

 equipped with a good feature representation, 
shallow methods can even beat the deep ones.



04 Progressive improvement

Experiments

 progressive learning curve

 diffrent input hash codes



04 Semantic discovery

Experiments

 real and synthetic images

 distribution of 10 classes
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