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Abstract

Building multiple hash tables has been proven a
successful technique for indexing massive databas-
es, which can guarantee a desired level of overall
performance. However, existing hash based multi-
indexing methods suffer from the heavy redundan-
cy, without strong table complementarity and effec-
tive hash code learning. To address the problems,
this paper proposes a complementary binary quan-
tization (CBQ) method to jointly learning multiple
hash tables. It exploits the power of incomplete bi-
nary coding based on prototypes to align the origi-
nal space and the Hamming space, and further uti-
lizes the nature of multi-indexing search to jointly
reduce the quantization loss based on the prototype
based hash function. Our alternating optimization
adaptively discovers the complementary prototype
sets and the corresponding code sets of a varying
size in an efficient way, which together robustly ap-
proximate the data relations. Our method can be
naturally generalized to the product space for long
hash codes. Extensive experiments carried out on
two popular large-scale tasks including Euclidean
and semantic nearest neighbor search demonstrate
that the proposed CBQ method enjoys the strong ta-
ble complementarity and significantly outperform-
s the state-of-the-arts, with up to 57.76% perfor-
mance gains relatively.

1 Introduction
Nearest neighbor search plays an important role in many ar-
eas like large-scale visual search [Xu et al., 2011; Song et al.,
2013; Zhang et al., 2014; Wang et al., 2015], machine learn-
ing [Jain et al., 2010; Mu et al., 2014], data mining [Zhang et
al., 2016], etc. Nowadays, as the amount of data and informa-
tion explodes, to solve the problem over gigantic database, the
hashing[Wang et al., 2018] based approximate nearest neigh-
bors search technique has been widely studied and success-
fully applied in practice, owing to its compressed storage and
efficient computation.
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In the literature, Locality-Sensitive Hashing (LSH) was
first introduced in [Indyk and Motwani, 1998; Datar et al.,
2004] as one of the most essential concepts. It adopted the
random projection paradigm to quantize the data into the bi-
nary bit (-1 or 1), promising that the nearest neighbors share
the similar codes. The binary codes serve as a type of com-
pact feature descriptor, which helps enable fast search. To
further improve the discriminative power of the hash codes,
later studies have tried to learn the projections by leverag-
ing the information contained in the data [Weiss et al., 2008;
Gong and Lazebnik, 2011; Xu et al., 2011; Li et al., 2013;
Huang et al., 2013; Jiang and Li, 2015; Shen et al., 2015]
and achieve very encouraging progress. However, they can
hardly capture the complex inherent structures underlying
the data, relying on the linear hash functions. The nonlin-
ear solutions such as deep learning based [Zhu et al., 2016;
Lin et al., 2016] and the prototype based [Li et al., 2016] have
shown their great power in a wide spectrum of tasks, where
usually complex data relations exist.

The binary codes can achieve compressed storage and ef-
ficient computations. But in practice for a balanced search
performance at a desired level, usually it is required to
build a number of hash tables to index the gigantic database
[He et al., 2012; Norouzi et al., 2012; Xia et al., 2013;
Cheng et al., 2014]. As the prior work has pointed out that
when building multiple tables using the binary codes generat-
ed by the most of existing hashing methods [Xu et al., 2011;
Liu et al., 2015], we inevitably encounter heavy redundancy
among the tables, and subsequently often need a huge number
of tables, at the cost of significant precision drops and heavy
computation. To address the problem, Xu et al. and Liu et
al. first studied complementary hashing methods to leverage
the mutual benefits between tables. More recently, a boost-
ing strategy named BCH was proposed to ensemble multiple
tables that can maximally cover the nearest neighbors with
theoretical convergence guarantee [Liu et al., 2017].

Despite the encouraging progress of complementary multi-
table indexing, all existing solutions learn the tables in a se-
quential way, without a overall view of the table relation-
s, and thus still suffer from the table redundancy. Besides,
for simplicity they often choose the linear projection based
hash functions, which also significantly limit the discrimina-
tive power of the hash codes in each table. To address both
issues, we develop the prototype based complementary bina-
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(c) CBQ
Figure 1: The geometric view of the binary quantization using ITQ,
CH and our CBQ, when building 2 tables with 3 bits per table on a
subset of GIST-1M. In each subfigure, the binary codes in different
colors respectively correspond to different tables. The average pre-
cisions for top 100 retrieval results (AP@100) of the three methods
using 3 bits per table are 0.59%, 0.63%, 0.77% respectively.

ry quantization (CBQ) that jointly considers the learning of
multiple tables. To the best of our knowledge, this is the first
work that truly pursues multiple table indices jointly for near-
est neighbor search. Figure 1 illustrates the geometric view of
the state-of-the-art methods ITQ [Gong and Lazebnik, 2011],
CH [Xu et al., 2011], and the proposed CBQ, where CBQ
learns evenly distributed binary codes over the whole data s-
pace, and thus largely improves the table complementarity by
eliminating their redundancy.

2 Complementary Binary Quantization
Next, we will formulate our complementary binary quantiza-
tion (CBQ) method for joint multi-table indexing.

Before that we first introduce the notations. Suppose we
have a training set with n training samples xi ∈ Rd, i =
1 . . . n of d dimension, and let denote the total training data
by the matrix X = [x1,x2, . . . ,xn] ∈ Rd×n. Our goal is
to jointly learn a specific number (i.e., L) of hash functions
{h(l)}Ll=1 that can help build informative and complementary
hash tables, where each h(l)(·) : Rd 7→ {−1, 1}b can encode
the sample into a b-length binary codes. Namely, the train-
ing data X can be encoded as Y(l) = [y

(l)
1 ,y

(l)
2 , . . . ,y

(l)
n ] ∈

{−1, 1}b×n by the l-th hash function.

2.1 Prototype-based Binary Quantization
The prototype technique (e.g., clustering) has been proved
very powerful to capture the general metric structure in high
dimensional space for large-scale datasets. Therefore, to gen-
erate discriminative hash codes for each table, we choose to
take advantages of the prototypes to describe the neighbor re-
lations among data. These prototypes will be further assigned
unique binary codes for the out-of-sample binary quantiza-
tion. For multi-table indexing, multiple sets of prototypes
will be required which should be able to retrieve the nearest
neighbors jointly.

In particular, we learn a set of prototypes P(l) =

{p(l)
k |p

(l)
k ∈ Rd} for the l-th table, and each prototype is

associated with a unique b-bit binary code c(l)k ∈ {−1, 1}b,
forming a binary codebook C(l) ⊆ {−1, 1}b.

Based on the prototypes P(l) and the corresponding code-
books C(l), any new data point x can be encoded using the
code of its nearest prototype in P(l), according to specif-
ic distance function do (usually Euclidean distance). The

prototype-based binary quantization function can be defined
as follows:

h(l)(x) = c
(l)

i(l)(x)
(1)

where i(l)(x) = argmin
k
do(x,p

(l)
k ).

2.2 Complementary Multi-Table Quantization
With the prototype-based binary quantization, the problem of
learning multiple hash tables can be turn to the pursuit of the
prototype sets and their codebooks. We aim to formulate the
problem and optimize them jointly.

Multi-Table Quantization Loss
When applying multi-table index to facilitate nearest neigh-
bor search, a true search result can be returned as long as it
is retrieved successfully by any hash table. Though directly
generating long hash codes using existing hashing methods
and then dividing them into multiple parts can also help build
multiple tables, our empirical observation shows that usual-
ly the data partition generated by different parts tends to be
correlated, without considering the nature of the multi-index
search.

Motivated by this point, for any sample x we only require
at least one of its nearest prototypes in different tables can
give the correct search results. Such a nearest prototype can
be given by

(l∗, k∗) = argmin
l

min
k
do(x,p

(l)
k ) (2)

where do(x,p
(l)
k ) is the quantization loss of the sample x with

respect to the prototype p
(l)
k .

As aforementioned, multi-table indexing attempts to max-
imally utilize the mutual benefits among tables. Therefore, to
guarantee the mutual complementarity, we should minimize
the following multi-table quantization loss over all the train-
ing data

Lquan =
1

n

n∑
i=1

d2o(xi,p
(l∗)
k∗ ) (3)

where do(xi,p
(l∗)
k∗ ) ≤ do(xi,p(l)

k ), (l, k) 6= (l∗, k∗).
Based on this formulation, in order to guarantee the strong

complementarity, a straightforward way is to reduce the over-
laps among the prototypes of different tables.

Space Alignment Loss
Minimizing the multi-table quantization loss can help us find
the most discriminative prototypes. However, how to pursue
the prototype-based hash functions, that can preserve the o-
riginal neighbor relations using binary codes, still remains a
critical problem.

Both the prototypes and the binary codes can be treated as a
kind of data partition, where the prototype works in the orig-
inal feature space, while the binary code in Hamming space.
Therefore, the desired hash functions, encoding the proto-
types into binary codes, actually establish a mapping between
the original space and the Hamming space. Specifically, we
expect the Hamming distances between the binary codes can



well approximate the original distances between prototypes,
i.e., the following fact should hold:

dh(c
(l′)
k′ , c

(l)
k ) ≈ λdo(p(l′)

k′ ,p
(l)
k ) (4)

where dh(c
(l′)
k′ , c

(l)
k ) is the square root of the Hamming dis-

tance between c
(l′)
k′ and c

(l)
k , and λ is a dynamic scale variable

for the two spaces.
Based on this fact, for each sample xi we expect its dis-

tance to any prototype p(l)
k can be approximated by their cor-

responding Hamming distance. To characterize such distance
consistency, we introduce the space alignment loss in (5),
minimizing which will make both the binary codes and the
prototypes well fit the true data distribution.

Lalign =
1

nM

n∑
i=1

L∑
l=1

|P(l)|∑
k=1

‖λdo(xi,p(l)
k )−dh(c(l

∗)
k∗ , c

(l)
k )‖2

(5)
where P(l) is the number of prototypes for the l-th table and
M=

∑L
l=1 |P(l)| is the total number of the prototypes.

We should point out that different from the previous pro-
totype based quantization methods like K-means Hashing
(KMH) relying on a codebook corresponding to a complete
hypercube[He et al., 2013], our method adaptively selects a
part of the hypercube to keep the distance consistency, which
shows more flexibility for depicting inherent data structure.

The Formulation
Based on the multi-table quantization loss and the space
alignment loss, we can obtain our final formulation for com-
plementary binary quantization:

min
{P(l)},{C(l)},λ

L = Lquan + µLalign

s.t. c
(l)
k ∈ {−1, 1}

b, (c
(l)
k )>c

(l)
k′ 6= b, k′ 6= k

do(xi,p
(l∗)
k∗ ) ≤ do(xi,p(l)

k ), (l, k) 6= (l∗, k∗)

(6)

Here, the first constraint on the binary codes in each C(l) will
guarantee that each prototype will be assigned a unique code.
Besides, for each sample xi, the second constraint allows us
mainly focus on the capability of its nearest prototype, which
is suitable for the multi-indexing search.

3 Joint Table Learning
There are multiple sets of prototypes and codebooks evolved
in Problem (6), which are coupled due to the multi-indexing
constraints. Moreover, the pursuit of the discrete binary codes
further increase the complexity of the problem. Therefore,
usually it is quite hard to directly solve it. Fortunately, by
transforming the multi-table quantization to a joint one, we
can address the above issues using an efficient alternating op-
timization algorithm and jointly learn multiple tables for a
small b (e.g., b ≤ 4).

3.1 Problem Reformulation
Since our goal is to jointly optimize all prototypes and code-
books of multiple hash tables, we first attempt to reformulate

the pursuit of multiple prototype sets to the learning of one
joined prototype set.

Since in multi-table search we only focus on the nearest
prototype across all tables for each query sample as formu-
lated in Problem (6), this can be done by merging all proto-
type sets P(l) into a larger one P = ∪P(l) and then finding
the nearest prototype from it. Correspondingly, their code-
book sets can also be joined as one C = ∪C(l) with repetition.
Note that, in C there will be the possibility that the same bina-
ry code occurs multiple times, and the total occurrence times
for each unique code should be less than L.

Based on this fact, we can construct a one-to-one mapping
that converts the original prototype index (l, k) to a uniform
one m ∈ {1, 2, . . . ,M}. Subsequently, both the multi-table
quantization loss and the space alignment loss can be rewrit-
ten as follows:

min
P,C,λ

L =
1

n

n∑
i=1

d2o(xi,pm∗i )

+
µ

nM

n∑
i=1

M∑
m=1

‖λdo(xi,pm)− dh(cm∗i , cm)‖2

s.t. cm ∈ {−1, 1}b, π(cm) ≤ L
do(xi,pm∗i ) ≤ do(xi,pm),m 6= m∗i

(7)

where π(cm) denotes occurrence time for the code cm. m∗i
is uniform index of prototype which is closest to sample xi.

3.2 Alternating Optimization
With the new formulation, now we can present an efficient
alternating optimization algorithm.

Step 1: Incomplete Coding
First, suppose we already have the prototypes and the assign-
ment for each sample (to start the algorithm, we initialize
them as described in Section 3.3). The problem turns to en-
coding the prototypes using a subset of binary codes from L
hypercubes (with L × 2b candidate codes) that can align the
spaces. Such an incomplete coding idea prove to be able to fit
the true data distribution using a part of hypercube structure
for each table.

Specifically, if supposing in the prototype set P , a subset
of prototypes p1, ...pm have been assigned the binary codes
c1, ...cm(1 ≤ m ≤ M), then we attempt to find the optimal
binary code cm′ for prototype pm′ from the remaining bina-
ry codes Cr =

⋃
L{−1, 1}b − {c1, . . . , cm}. With the fact

that 1
n

∑n
i=1 d

2
o(xi,pm∗i ) is a constant, the problem in (7) is

equivalent to:

min
cm′∈Cr

∑
xi,m∗i =m

′

∑
m 6=m′

‖λdo(xi,pm)− dh(cm′ , cm)‖2

+
∑

xi,m∗i 6=m′
‖λdo(xi,pm′)− dh(cm∗i , cm′)‖

2

s.t. π(cm′) ≤ L

(8)

Since there are at most 2b candidate codes for each prototype,
the incomplete coding can be directly solved by evaluating



the loss for each candidate and selecting the minimal one by
a greedy algorithm. For m = 1 as the start of the coding, we
can choose any binary code c1 for any prototype, owing to
the high symmetry of the hypercube structure.

Step 2: Prototype Pursuit
After obtaining the codebook C, next we can update the proto-
type set P to further reduce the multi-table quantization loss
and increase the space consistency. Therefore, we have the
following subproblem:

min
P

1

n

n∑
i=1

d2o(xi,pm∗i )

+
µ

nM

n∑
i=1

M∑
m=1

‖λdo(xi,pm)− dh(cm∗i , cm)‖2

s.t. do(xi,pm∗i ) ≤ do(xi,pm),m 6= m∗i

(9)

The above problem is quite similar to the classic k-means
clustering. Motivated by this observation, we can simply op-
timize the subproblem by iteratively updating the prototype
and the assignment for each sample. Specifically, by fixing
the assignment we can derive the update of pm as follows:

pm =
1

wm

∑
m∗i =m

xi (10)

where wm is the number of samples assigned to the prototype
pm. The optimal assignment for each sample xi in multi-
table search can be found easily as we pointed before:

m∗i = arg min
m=1,...,M

do(xi,pm). (11)

Note that the prototype set will shrink, due to that some
uninformative prototypes without any sample assigned will
be abandoned. This will lead to the incomplete coding.

Step 3: Rescaling
The learnt prototype and codebook sets respectively construct
a distribution structure in original data space and Hamming s-
pace. Intuitively, by minimizing the space alignment loss, the
two structures can be well matched. To further minimizing
the quantization loss, we still require a proper space scaling
that make the distance measurement consistent across the t-
wo spaces. This can be completed by solving the following
subproblem.

min
λ

n∑
i=1

M∑
m=1

‖λdo(xi,pm)− dh(cm∗i , cm)‖2 (12)

whose optimal solution can be given by

λ =

∑n
i=1

∑M
m=1 dh(cm∗i , cm)∑n

i=1

∑M
m=1 do(xi,pm)

. (13)

Table Assignment
After we jointly optimize the prototypes P and hash code-
book C, to build L hash table indices we can simply divide
them to L parts using a random assignment strategy, follow-
ing the two principles: (1) there are no identical hash codes in

Algorithm 1 Complementary Binary Quantization (CBQ).

Input: Training set X, hash table number L, code length b
per table.

Output: Hash functions {h(l)}Ll=1
1: Initialize prototype set P and the assignment index m∗i

for X using K-means.
2: Initialize the scale variable λ according to (14).
3: repeat
4: for m′ = 1, 2, . . . ,M do
5: Update the code set C using the local optimal bi-

nary code cm′ for pm′ by solving (8).
6: end for
7: Update P by iteratively solving (10) and (11).
8: Update λ according to (13).
9: until convergence

10: Assign P and C to L hash tables, generating {h(l)}Ll=1.

the same hash table, and (2) the prototype numbers of every
hash table should be balanced.

Since each binary code corresponds to an integer number
varying in {0, 1, . . . , 2b − 1}, we conduct the assignment ac-
cording to their numerical order. Namely, we allocate the
hash codes and the prototypes with the same number to d-
ifferent tables, which promises that the same hash codes will
not appear in the same table. Besides, we try to keep the num-
ber of the assigned codes in each table evenly distributed, and
thus balance the indexing capability of multiple tables.

Algorithm 1 lists the main optimization steps of our CBQ
method for the joint multi-table learning.

3.3 Discussions
Initialization
To start the algorithm, we initialize the prototypes P and the
assignment m∗i for each samples using the classical K-means
algorithm on the training data set. The number of clusters
(or prototypes) is set to M = L × 2b at first. Based on the
initialization, we also estimate the scaling variable λ using
the full binary codes in L hypercubes of b dimension, i.e.,
similar to (13),

λ =

1
M

∑
cm,cm′∈

⋃
L{−1,1}b

dh(cm, cm′)

1
n

∑n
i=1

∑M
m=1 do(xi,pm)

. (14)

Generating long hash codes
Till now we have discuss how to generate multiple comple-
mentary hash tables, each of which relies on a short hash
codes (usually b ≤ 4). In practice, often long binary codes
are required in many tasks for a better performance. Howev-
er, it is difficult for our CBQ to jointly learns L × 2b

′
proto-

types for a large b′ > 4, due to the exponential computation.
Fortunately, in our paper we mainly focus on the generic Eu-
clidean distance and thus can adopt the popular product quan-
tization (PQ) technique to generalize CBQ to product space
for long binary codes. Specifically, in order to generate long
hash codes, we can first divide the original space into multiple
subspaces, then learn a small codes using our CBQ method,
and finally concatenate the small ones in different subspaces
to the long ones in a Cartesian product manner.



Table 1: The AP @100 (%) and time cost (seconds) of different hashing methods on SIFT-1M and GIST-1M.

METHOD
SIFT-1M GIST-1M

L=1 L=4 L=8 L=16 TRAIN TIME L=1 L=4 L=8 L=16 TRAIN TIME

LSH 27.71 ±0.63 29.40 ±0.81 29.08 ±2.47 29.62 ±0.79 0.04 9.67 ±0.61 10.54 ±0.42 11.54 ±0.24 11.76 ±0.84 5.11
ITQ 41.06 ±1.53 30.70 ±0.33 - - 3.40 26.83 ±0.28 16.62 ±0.60 14.20 ±0.31 12.59 ±0.80 12.83
SH 48.81 ±0.84 19.64 ±3.32 14.55 ±2.59 10.53 ±0.87 0.19 13.72 ±1.10 8.05 ±1.13 5.90 ±0.57 4.97 ±0.44 2.22

AGH 31.55 ±1.71 30.01 ±1.91 28.07 ±1.79 - 0.40 12.55 ±1.25 11.28 ±0.50 11.62 ±0.50 - 4.51
SPH 39.41 ±0.89 41.49 ±0.59 41.78 ±0.98 41.61 ±0.38 5.30 22.76 ±0.59 19.68 ±0.52 19.50 ±0.44 19.42 ±0.55 18.39
ABQ 51.53 ±1.30 32.88 ±0.57 24.61 ±0.69 10.60 ±0.61 36.08 29.28 ±0.60 17.44 ±0.55 14.22 ±0.67 4.56 ±0.06 74.00
CH 50.51 ±0.94 52.28 ±0.35 53.05 ±0.80 54.12 ±0.82 0.24 18.74 ±0.78 23.83 ±0.41 24.74 ±0.41 25.68 ±0.53 2.94

BCH 45.81 ±0.93 53.30 ±0.44 55.69 ±0.60 57.37 ±0.31 258.33 14.02 ±0.65 17.04 ±0.40 18.59 ±0.60 19.94 ±0.71 332.61
CBQ(OURS) 52.39 ±0.71 55.95 ±0.68 57.38 ±0.51 57.76 ±0.79 18.75 26.55 ±1.09 28.87 ±0.72 29.28 ±1.18 29.38 ±0.83 27.51

Complexity
To learn L hash tables from n training samples of d dimen-
sion, our CBQ algorithm will totally spend O(4bndL2) time
on the incomplete coding (step 1) that greedily finds the lo-
cally optimal code for each prototype in each subspace, and
at most 4bndL2 time on prototype (step 2) and scalar update
(step 3), mainly deriving from the computation of the dis-
tances between training samples and prototypes. With the
short code length b ≤ 4 of each subspace, the term 4bL2 can
be treated as a constant. Therefore, the total time for training
is linear to the size of the training set. At the online search
stage, for each query point the hash functions need O(2bdL)
time to compute the nearest prototype and O(1) time for the
code assignment. This is almost the same to the fast hashing
methods like LSH and ITQ.

4 Experiments
In this section we will evaluate the proposed Complementary
Binary Quantization (CBQ) in two popular large-scale tasks
including Euclidean and semantic nearest neighbor search.

We first compare CBQ to the state-of-the-art well-known
unsupervised hashing algorithms, including the projection
based ones like Local Sensitive Hashing (LSH)[Indyk and
Motwani, 1998], Iterative Quantization (ITQ)[Gong and
Lazebnik, 2011], Spectral Hashing (SH)[Weiss et al., 2008]
and Anchor Graph Hashing (AGH)[Takebe et al., 2015], and
two representative prototype based ones including Spherical
Hashing (SPH)[Heo et al., 2012] and Adaptive Binary Quan-
tization (ABQ)[Li et al., 2016]. Besides, since we mainly
tackle the multiple table indexing problem from the practical
view, which is quite different from the conventional hashing
methods, we also compare our CBQ with two state-of-the-
art multi-table methods including Complementary Hashing
(CH)[Xu et al., 2011] and Boosting Complementary Hash-
ing (BCH)[Liu et al., 2017].

We have to point out that most of the existing hashing re-
search mainly devoted their efforts to pursuing compact hash
codes for Hamming distance ranking or single hash table
lookup. Therefore, when applying these methods to building
L (L = 1, 4, 8, 16) tables with b-length (b = 24) hash codes
in each table, we adopt the common strategy that first gen-
erates bL-length codes totally and then equally divides them
to L parts correspondingly forming L hash tables, similar to
Multi-Index Hashing [Norouzi et al., 2012]. For those meth-
ods using PQ subspace (ABQ and CBQ), we encode the data
in each subspace using 3 bits.

4.1 Evaluation Protocols
In the following experiments we respectively build a different
number of hash tables using different methods. As we mainly
focus on multi-table indexing technique, we adopt two search
schemes over the multiple hash tables, namely the Hamming
distance ranking and the hash table lookup.

The Hamming distance ranking should reflect the nature of
multi-table search that a point in any hash table with a small
Hamming distance to the query will be ranked top. Formally,
for the query xq and any database point xi we can give their
distance over multiple tables as follows

d(xq,xi) = min
l=1,...,L

dh(y
(l)
q ,y

(l)
i ).

Based on such Hamming distance we can rank all database
points in the multi-table indexing nature, and evaluate the
ranking performance in terms of the average precision.

Hash table lookup works like the inverted indexing, where
the points falling within a small Hamming radius r (usually
r ≤ 2 for efficiency) from the query code are retrieved from
each table and merged as the final results. We mainly concern
the overall performance by reporting F1-measure.

In the experiments, we randomly select 10,000 and 1,000
samples as the training and the testing set respectively. Be-
sides, to suppress the randomness we repeat all experiments
10 times and report the averaged performance.

4.2 Results and Discussions
Multi-table indexing serves as a very fundamental technique
in the fields of computer vision, information retrieval, etc.
Here, we investigate two of its popular applications includ-
ing feature matching (Euclidean nearest neighbor search) and
image retrieval (semantic nearest neighbor search).

Euclidean Nearest Neighbor Search
Here we employ the two widely-used datasets SIFT-1M and
GIST-1M [Jegou et al., 2011] that respectively consist of one
million 128-D SIFT and 960-D GIST-1M features. In this
task, the groundtruth is defined according to Euclidean dis-
tance, namely for each query the top 5‰points with the s-
mallest Euclidean distances are regarded as its nearest neigh-
bors. We set µ to 100 on SIFT-1M and 0.2 on GIST-1M.

Table 1 lists the average precision of the top 100 with re-
spect to different number of hash tables. From the table, it
is easy to see that the multi-table methods significantly out-
perform conventional hashing methods like ITQ and ABQ
when constructing more hash tables. This further validates



Table 2: MAP (%) and time cost (seconds) of different hashing methods on CIFAR-10 and NUS-WIDE.

METHOD
CIFAR-10 NUS-WIDE

L=1 L=2 L=4 L=8 TRAIN TIME L=1 L=2 L=4 L=8 TRAIN TIME

LSH 17.58 ±0.76 18.40 ±1.10 19.85 ±0.65 20.74 ±0.70 1.17 37.96 ±0.50 40.61 ±1.76 41.34 ±1.64 42.22 ±1.22 1.13
ITQ 31.01 ±0.63 27.37 ±0.84 26.36 ±0.60 26.62 ±0.32 11.65 49.19 ±0.30 47.38 ±0.59 45.84 ±0.73 46.37 ±0.84 8.17
SH 18.22 ±0.87 14.84 ±0.91 13.03 ±0.18 12.65 ±0.25 6.86 38.43 ±1.32 37.41 ±0.69 35.22 ±0.68 36.39 ±0.57 6.32

AGH 32.23 ±1.39 31.11 ±2.51 29.14 ±2.42 29.44 ±1.24 1.93 49.62 ±2.66 49.22 ±1.80 49.70 ±1.00 48.53 ±1.79 1.69
SPH 22.64 ±1.38 22.17 ±0.29 22.03 ±0.44 22.55 ±0.13 33.95 43.21 ±1.22 43.71 ±1.07 43.67 ±0.66 44.08 ±0.82 30.13
ABQ 18.94 ±5.26 10.62 ±0.88 10.77 ±0.67 10.97 ±0.46 32.67 38.73 ±3.75 36.98 ±2.92 36.44 ±1.81 34.41 ±1.52 36.42
CH 18.48 ±0.27 22.02 ±0.82 24.75 ±1.34 26.11 ±0.36 8.12 38.46 ±0.59 42.32 ±0.56 44.52 ±0.71 45.72 ±0.83 6.90

BCH 18.52 ±1.10 19.95 ±1.06 19.22 ±1.69 22.44 ±1.18 747.89 37.95 ±2.54 39.46 ±0.86 38.70 ±1.48 39.07 ±1.96 903.97
CBQ(OURS) 39.66 ±1.79 39.37 ±1.89 36.63 ±1.51 36.62 ±1.22 59.60 51.92 ±1.53 54.08 ±1.86 52.18 ±0.91 51.14 ±1.76 53.69
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(d) NUS-WIDE
Figure 2: F1-Measure performance using different number of hash
tables on four datasets when the search radius r = 2.
Table 3: F1-Measure performance (%) and time cost (ms) of PQ
(256 coarse clusters) and CBQ with the same code length in each
subspace and same lookup radius on SIFT-1M and GIST-1M.

METHOD
SIFT-1M GIST-1M

F1 MEASURE TIME COST F1 MEASURE TIME COST

PQ 23.18 1.22 13.12 3.39

CBQ
L=8 19.52 0.02 13.45 0.14

L=16 27.08 0.04 13.07 0.26

our conclusion that most of existing hashing methods, main-
ly focusing on compact binary codes, are not suitable for the
multi-indexing task. Note that LSH also improves the perfor-
mance slightly, and this is why many practical applications
build table indexing using LSH instead of the learning based
ones. Compared to LSH and the other state-of-the-art multi-
table methods, our CBQ can obtain the best performance in
all cases based on the joint quantization, which indicates that
the joint quantization can faithfully help strengthen the com-
plementary between tables. We can get the similar conclusion
from Figure 2 (a) and (b), which depict the F1-measure on the
two datasets. In Table 1, we also report the training time and
find that CBQ enjoys fast training as we analyzed.

Semantic Nearest Neighbor Search
We further evaluate CBQ on semantic nearest neighbor
search for the image retrieval task. we choose two widely-
used large-scale image datasets: CIFAR-10 and NUS-WIDE.
CIFAR-10 contains of 60K 32×32 color images of 10 classes
and 6K images in each class, and NUS-WIDE consists of over
269K images with 81 semantic tags. Here, the groundtruth for

each query is defined as those samples with common seman-
tics (class or tag) as the query. For both datasets, we extract
4096-D convolutional features for each image using the pre-
trained VGG network. For NUS-WIDE, we further select 21
most frequent tags for the task in the NUS-WIDE dataset. We
set µ to 10 on CIFAR-10 and 20 on NUS-WIDE.

Table 2 reports the MAP performance using different meth-
ods on CIFAR-10 and NUS-WIDE, where we can get the
same observation that the multi-table learning methods in-
crease the performance obviously when constructing more
hash tables, and while the conventional compact hashing
methods usually decrease. Figure 2 (c) and (d) further inves-
tigate the F1-measure performance using hash table lookup.
In all cases, we can find that our CBQ performs consistently
with the best performance among all methods, which proves
that our joint quantization solution promises the complemen-
tarity for the semantic neighbor relations.

In Table 3, we also compared our CBQ with the inverted
indexing based on product quantization. From the table, we
can see that when using the same lookup radius, our CBQ
using 8 or 16 tables can get the comparable or even better
performance. But in practice, CBQ search is much faster than
PQ indexing method.

5 Conclusion
In this paper we mainly studied the hash based multi-indexing
problem that has been widely used in many large-scale appli-
cations, and proposed a complementary binary quantization
(CBQ) method that can jointly pursues multiple complemen-
tary and informative hash tables. CBQ method simultaneous-
ly considers the nature of multi-table search and the align-
ment between the original and Hamming space, and can pre-
serve the space consistency using multiple tables. Compared
to the state-of-the-art multi-table learning methods, it enjoys
both fast training and effective coding based on prototype-
s and the PQ technique. We have comprehensively evaluat-
ed our CBQ method on two fundamental tasks including Eu-
clidean and semantic nearest neighbor search, and our results
prove that CBQ can significantly outperform the state-of-the-
arts with strong table complementarity.
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