

Complementary Binary Quantization for Joint Multiple Indexing

Qiang Fu¹, Xu Han¹, Xianglong Liu^{1*}, Jingkuan Song², Cheng Deng³

¹ Beihang University, Beijing, China
² University of Electronic Science and Technology of China, Chengdu, China
³ Xidian University, Xi'an, China

Introduction

- Hash-based Nearest Neighbor Search (NNS) Solution
- Multi-table Indexing

Complementary Binary Quantization (CBQ)

- Complementary Multi-Table Quantization Formulation
- Joint table learning
- Algorithm details

Experiments

- Euclidean Nearest Neighbor Search
- Semantic Nearest Neighbor Search

Reference

IJCAI 2018

Hash-based solution

- Encode data to binary codes
- Compressed storage and efficient computation
- Widely-used in many applications like image search, feature match...

Locality Sensitive Hashing (LSH)

- Close points in the original space have similar hash codes

Projection based hashing

- leverage the information contained in the data
- ITQ, SH, AGH...

Prototype based hashing

- Characterize the natural data relations better
- SPH, ABQ...

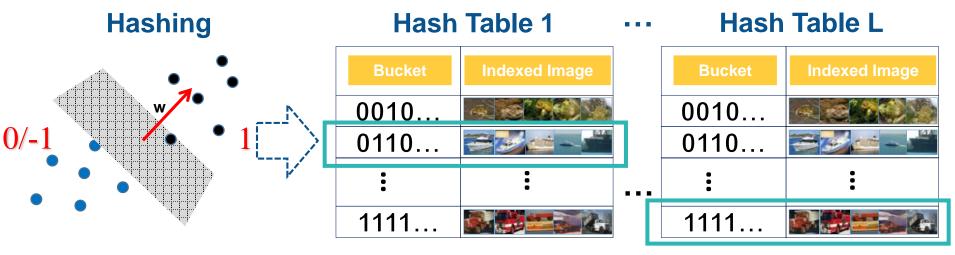
IJCAI 2018

0/-

Introduction: Multi-table Indexing

Multi-table indexing

- Build multiple hash tables and probe multiple buckets to improve the search performance
- Complementary multi-table method
 - maximally cover the nearest neighbors using fewer tables



Problems

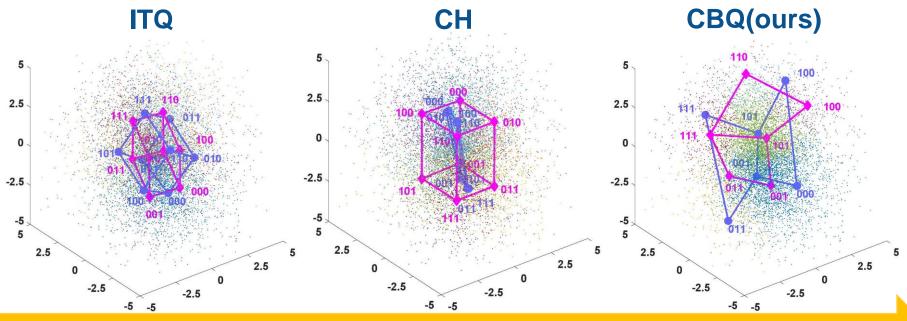
Search results

- Suffer from the table redundancy still
- Describe the data distribution and relation not well

Complementary Binary Quantization

- Goal and Motivation
 - Complementary: jointly learn the multiple hash tables
 - Informative: use prototype based hashing quantization
- Formulation

$$\min_{\{P^{(l)}\},\{C^{(l)}\},\lambda} L = L_{quan} + \mu L_{align}$$



capture the data distribution better, improve the table complementarity more

Multi-Table Quantization Loss

- Consider the nature of the multi-index search, only at least one of its nearest prototypes in different tables needed for the correct search results
- Select the nearest prototype from all tables

$$L_{quan} = \frac{1}{n} \sum_{i=1}^{n} d_o^2 (x_i, p_{k^*}^{(l^*)})$$

$$d_o \left(x_i, p_{k^*}^{(l^*)}\right) \le d_o \left(x_i, p_k^{(l)}\right), (l, k) \ne (l^*, k^*)$$

110

2.5

Space Alignment Loss

- Concentrate on the distance consistence so that codes in Hamming space will be aligned with the original data distribution

$$L_{align} = \frac{1}{nM} \sum_{i=1}^{n} \sum_{l=1}^{L} \sum_{k=1}^{|P^{(l)}|} \left\| \lambda d_o \left(x_i, p_k^{(l)} \right) - d_h \left(c_{k^*}^{(l^*)}, c_k^{(l)} \right) \right\|^2$$

• $P^{(l)}$ is the number of prototypes for the *l*-th table

•
$$M = \sum_{l=1}^{L} \left| P^{(l)} \right|$$

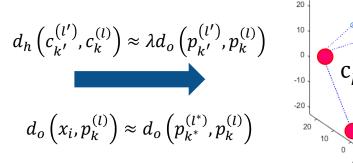
0.6

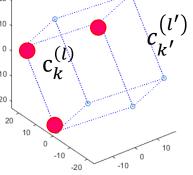
0.4

0.2

18

Using a small subset of binary codes





the Hamming space

the original space

20

0.8

0.6

0.4

7

CBQ: Joint Table Learning

Reformulation for Joint Table Learning

- construct a one-to-one mapping that converts the original prototype index (l, k) to a uniform one $m \in \{1, 2, ..., M\}$

$$\begin{split} \min_{P,C,\lambda} L &= \frac{1}{n} \sum_{i=1}^{n} d_o^2 \left(x_i, p_{m_i^*} \right) + \frac{\mu}{nM} \sum_{i=1}^{n} \sum_{m=1}^{M} \left\| \lambda d_o(x_i, p_m) - d_h \left(c_{m_i^*}, c_m \right) \right\|^2 \\ s.t. \quad c_m \in \{-1, 1\}^b \; ; \pi(c_m) \leq L, d_o \left(x_i, p_{m_i^*} \right) \leq d_o(x_i, p_m), m \neq m_i^* \end{split}$$

Alternating Optimization

(1) Incomplete Coding (optimize C)

 Find a sub-codebook most consistent with the prototypes

(2) Prototype Pursuit (optimize P)

- Find a prototype set that will shrink
- (3) **Rescaling** (optimize λ)
 - Find a proper space scaling

Algorithm 1 Complementary Binary Quantization (CBQ).

- **Input:** Training set \mathbf{X} , hash table number L, code length b per table.
- **Output:** Hash functions $\{h^{(l)}\}_{l=1}^{L}$
- 1: Initialize prototype set \mathcal{P} and the assignment index m_i^* for X using K-means.
- 2: Initialize the scale variable λ according to (14).
- 3: repeat
- 4: for m' = 1, 2, ..., M do
- 5: Update the code set C using the local optimal binary code $\mathbf{c}_{m'}$ for $\mathbf{p}_{m'}$ by solving (8).
- 6: end for
- 7: Update \mathcal{P} by iteratively solving (10) and (11).
- 8: Update λ according to (13).
- 9: **until** convergence
- 10: Assign \mathcal{P} and \mathcal{C} to L hash tables, generating $\{h^{(l)}\}_{l=1}^{L}$.

CBQ: Algorithm Details

Table Assignment

- Use a random assignment strategy
 - no identical hash codes in the same hash table
 - the prototype numbers of each hash table should be balanced

Initialization

- P: classical k-means clustering
- λ : $M(L \times 2^b)$ prototypes and codes

• Generate long hash codes ($L \times 2^{b'}$)

- Use product quantization method

Complexity

- Training:
$$O\left(\left(L \times 2^{b}\right)^{2} n d\right) = O(4^{b} L^{2} n d)$$
, almost linear to n

- Testing: $O(2^bLd)$, close to constant, almost same to LSH and ITQ

- Datasets
 - Euclidean Nearest Neighbor Search (NNS)
 - SIFT-1M: 1M 128-D SIFT, GIST-1M: 1M 960-D GIST
 - Semantic Nearest Neighbor Search (NNS)
 - CIFAR-10: 60K 384-D GIST, NUS-WIDE: 269K 4096-D Conv feature

Baselines

- State-of-the-art unsupervised hashing
 - Projection-based: LSH, ITQ, SH, AGH
 - Prototype-based: **SPH** , **ABQ**
- Multi-table hashing methods: CH, BCH

Settings

- 10,000 training samples and 1,000 queries on each set
- Hash code length: B = 24, b = 3(each subspace)

IJCAI 2018

Experiments: Euclidean NNS

Groundtruth

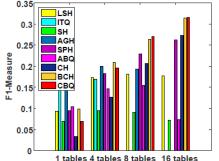
- the top 5‰ points with the smallest Euclidean distances

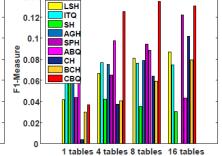
• Hamming distance ranking $d(\mathbf{x}_q, \mathbf{x}_i) = \min_{l=1, L} d_h(\mathbf{y}_q^{(l)}, \mathbf{y}_i^{(l)}).$

Method	SIFT-1M					GIST-1M					
	L=1	L=4	L=8	L=16	TRAIN TIME	L=1	L=4	L=8	L=16	TRAIN TIME	
LSH	27.71 ± 0.63	29.40 ± 0.81	29.08 ± 2.47	29.62 ± 0.79	0.04	9.67 ±0.61	10.54 ± 0.42	11.54 ± 0.24	11.76 ± 0.84	5.11	
ITQ	41.06 ± 1.53	30.70 ± 0.33	-	-	3.40	26.83 ± 0.28	16.62 ± 0.60	14.20 ± 0.31	12.59 ± 0.80	12.83	
SH	48.81 ± 0.84	19.64 ±3.32	14.55 ± 2.59	10.53 ± 0.87	0.19	13.72 ± 1.10	8.05 ± 1.13	5.90 ± 0.57	4.97 ± 0.44	2.22	
AGH	31.55 ±1.71	30.01 ± 1.91	28.07 ±1.79	-	0.40	12.55 ± 1.25	11.28 ± 0.50	11.62 ± 0.50	-	4.51	
SPH	39.41 ± 0.89	41.49 ± 0.59	41.78 ± 0.98	41.61 ± 0.38	5.30	22.76 ± 0.59	19.68 ± 0.52	19.50 ± 0.44	19.42 ± 0.55	18.39	
ABQ	51.53 ± 1.30	32.88 ± 0.57	24.61 ± 0.69	10.60 ± 0.61	36.08	29.28 $_{\pm 0.60}$	17.44 ± 0.55	14.22 ± 0.67	4.56 ± 0.06	74.00	
СН	50.51 ±0.94	52.28 ± 0.35	53.05 ± 0.80	54.12 ± 0.82	0.24	18.74 ± 0.78	23.83 ± 0.41	24.74 ± 0.41	25.68 ± 0.53	2.94	
BCH	45.81 ± 0.93	53.30 ± 0.44	55.69 ± 0.60	57.37 +0.31	258.33	14.02 ± 0.65	17.04 ± 0.40	18.59 ± 0.60	19.94 ± 0.71	332.61	
CBQ(OURS)	52.39 $_{\pm 0.71}$	55.95 $_{\pm 0.68}$	$\textbf{57.38}_{\pm 0.51}$	57.76 $_{\pm 0.79}$	18.75	26.55 ± 1.09	28.87 ± 0.72	$\textbf{29.28} \scriptstyle \pm 1.18$	$\textbf{29.38}_{\pm 0.83}$	27.51	

Table 1: The AP @100 (%) and time cost (seconds) of different hashing methods on SIFT-1M and GIST-1M.

Hash table lookup (Hamming radius ≤3)





	Method		SIFT-	1 M	GIST-1M			
			F1 MEASURE	TIME COST	F1 MEASURE	TIME COST		
	PQ		23.18	1.22	13.12	3.39		
	CBQ	L=8	19.52	0.02	13.45	0.14		
		L=16	27.08	0.04	13.07	0.26		

< 1.SIFT-1M 2.GIST-1M

Experiments: Semantic NNS

Groundtruth

- those samples with common tags as the query

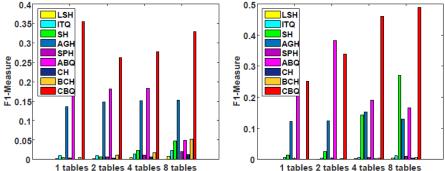
Hamming distance ranking

 $d(\mathbf{x}_q, \mathbf{x}_i) = \min_{l=1,\dots,L} d_h(\mathbf{y}_q^{(l)}, \mathbf{y}_i^{(l)}).$

Method	CIFAR-10					NUS-WIDE					
	L=1	L=2	L=4	L=8	TRAIN TIME	L=1	L=2	L=4	L=8	TRAIN TIME	
LSH	17.58 ±0.76	18.40 ± 1.10	19.85 ±0.65	20.74 ± 0.70	1.17	37.96 ± 0.50	40.61 ± 1.76	41.34 ± 1.64	42.22 ± 1.22	1.13	
ITQ	31.01 ± 0.63	27.37 ± 0.84	26.36 ± 0.60	26.62 ± 0.32	11.65	49.19 ± 0.30	47.38 ± 0.59	45.84 ± 0.73	46.37 ± 0.84	8.17	
SH	18.22 ± 0.87	14.84 ± 0.91	13.03 ± 0.18	12.65 ± 0.25	6.86	38.43 ± 1.32	37.41 ± 0.69	35.22 ± 0.68	36.39 ± 0.57	6.32	
AGH	32.23 ± 1.39	31.11 ± 2.51	29.14 ± 2.42	29.44 ± 1.24	1.93	49.62 ± 2.66	49.22 ± 1.80	49.70 ± 1.00	48.53 ±1.79	1.69	
SPH	22.64 ± 1.38	22.17 ± 0.29	22.03 ± 0.44	22.55 ± 0.13	33.95	43.21 ± 1.22	43.71 ± 1.07	43.67 ±0.66	44.08 ± 0.82	30.13	
ABQ	18.94 ± 5.26	10.62 ± 0.88	10.77 ± 0.67	10.97 ± 0.46	32.67	38.73 ± 3.75	36.98 ± 2.92	36.44 ± 1.81	34.41 ± 1.52	36.42	
CH	18.48 ± 0.27	22.02 ± 0.82	24.75 ± 1.34	26.11 ± 0.36	8.12	38.46 ± 0.59	42.32 ± 0.56	44.52 ± 0.71	45.72 ± 0.83	6.90	
BCH	18.52 ± 1.10	19.95 ± 1.06	19.22 + 1.69	22.44 + 1.18	747.89	37.95 ± 2.54	39.46 ± 0.86	38.70 ± 1.48	39.07 + 1.96	903.97	
CBQ(OURS)	39.66 ±1.79	39.37 ±1.89	$\textbf{36.63} \scriptstyle \pm 1.51$	$\textbf{36.62}_{\pm 1.22}$	59.60	51.92 ±1.53	54.08 $_{\pm 1.86}$	52.18 ± 0.91	$51.14{\scriptstyle~\pm1.76}$	53.69	

Table 2: MAP (%) and time cost (seconds) of different hashing methods on CIFAR-10 and NUS-WIDE.

Hash table lookup (Hamming radius ≤3)



< 1.CIFAR-10 2.NUS-WIDE

- 1. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In ACM STOC, pages 604–613, 1998.
- 2. Yunchao Gong and S. Lazebnik. Iterative quantization: A procrustean approach to learning binary codes. In IEEE CVPR , pages 817–824, 2011.
- 3. Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon. Spherical hashing. In IEEE CVPR, pages 2957–2964, 2012.
- 4. Zhujin Li, Xianglong Liu, Junjie Wu, and Hao Su. Adaptive binary quantization for fast nearest neighbor search. In ECAI, pages 64–72, 2016.
- Hao Xu, Jingdong Wang, Zhu Li, Gang Zeng, Shipeng Li, and Nenghai Yu. Complementary hashing for approximate nearest neighbor search. In IEEE ICCV, pages 1631–1638, 2011.
- 6. Xianglong Liu, Cheng Deng, Yadong Mu, and Zhujin Li. Boosting complementary hash tables for fast nearest neighbor search. In AAAI, pages 4183–4189, 2017.
- 7. Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE TPAMI, 33(1):117–128, January 2011.
- 8. Yan Xia, Kaiming He, Fang Wen, and Jian Sun. Joint inverted indexing. In IEEE ICCV, pages 3416–3423, 2013.
- 9. Mohammad Norouzi, Ali Punjani, and David J. Fleet. Fast search in hamming space with multi-index hashing. In IEEE CVPR , pages 3108–3115, 2012.

IJCAI 2018

