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ABSTRACT
Hashing methods, which generate binary codes to preserve
certain similarity, recently have become attractive in many
applications like large scale visual search. However, most of
state-of-the-art hashing methods only utilize single feature
type, while combining multiple features has been proved
very helpful in image search. In this paper we propose a
novel hashing approach that utilizes the information con-
veyed by different features. The multiple feature hashing
can be formulated as a similarity preserving problem with
optimal linearly-combined multiple kernels. Such formula-
tion is not only compatible with general types of data and
diverse types of similarities indicated by different visual fea-
tures, but also helpful to achieve fast training and search.
We present an efficient alternating optimization to learn the
hashing functions and the optimal kernel combination. Ex-
perimental results on two well-known benchmarks CIFAR-10
and NUS-WIDE show that the proposed method can achieve
11% and 34% performance gains over state-of-the-art meth-
ods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
Multiple Feature, Multiple Kernel, Compact Hashing

1. INTRODUCTION
The explosive growth of the vision data motivates the re-

cent studies on hash based nearest neighbor search. These
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Figure 1: Illustration of the proposed method.

methods have show promising performance in many appli-
cations. One of the most well-know methods is locality-
sensitive hashing (LSH) [1]. It generates binary codes by
projecting data on random vectors such that points within
small distances share the same codes with a high probabil-
ity. Following LSH, many well-designed hashing methods
are proposed to solve different problems under various situ-
ations like unsupervised [11, 7] and supervised [9, 8] settings.

Despite of the aforementioned progress in hash based sim-
ilarity search, most existing hashing methods still have one
important limitation that only one visual feature is utilized.
It is widely accepted that, in many applications instead of
using a single feature type, a better way is to adaptively
combine a set of diverse and complementary features to dis-
criminate each data. For instance, in the literature content-
based image retrieval systems gain significant performance
improvement by fusing multiple features like color and tex-
ture [10]. Recently, local features combining with the global
shape feature gives promising performance in mobile prod-
uct search [4]. Feature combinations (feature fusion) is also
very helpful in other domains like image classification [2].

To our best knowledge, there is very few works that learn
hash functions incorporating multiple features expect [12]
and [10]. In [12] the output of the hashing function is the
convex output combination of linear hash functions on dif-
ferent sources, while [10] concatenates all features as one and
projects it using the learned hashing hyperplane.

Although achieving promising improvement than single
feature, these methods still either simply post-combine lin-
ear outputs of each feature type or equally concatenate all
features as one. Different features may convey unbalanced
and different information, which may be complementary to
each other under different similarity space. Therefore it
would be better to exploit the correlation between features.
Moreover, these methods are not compatible with other data



types except vector type and different similarity measures
widely involving in vision area. The correlation and im-
portance of each feature type are still not fully exploited.
In addition, partially due to features concatenation, these
methods are computationally expensive in both training and
searching (comparison details shown in Table 1), and there-
fore cannot be applied to solving large scale image search
with a number of high-dimensional visual features.

In this paper, we propose a novel hashing approach that
utilizes the similarities conveyed by different features. With
concatenation of different features embedded into their sim-
ilarity kernel space, the hashing problem can be formulated
as a similarity preserving hashing with linearly combined
multiple kernels. Kernel tricks are often more natural to
gauge the similarity of general data types, where the under-
lying data embedding to the high-dimensional space is not
known explicitly. Many hashing methods benefit from the
use of domain specific kernel functions [6] [9] [5]. In this
formulation, instead of a kernel function for single visual
feature, a set of kernels for different features are combined
and more discriminative ones in the combination are selected
automatically. This is very similar to the popular method
in computer vision named Multiple Kernel Learning (MKL)
[3], which has shown to be able to better balance the simi-
larities and improve the performance.

Due to the kernel form, the combination of multiple fea-
tures embedded into their kernel space individually doesn’t
bring more computation than a single feature type. With
this formulation, we efficiently and alternately optimize the
hashing functions and the kernel combination using eigen-
decomposition and quadratic programming respectively. It
is worth highlighting that the proposed method: 1. is for-
mulated in kernel form and thus compatible with
general types of data with any kernel function. 2.
combines diverse types of similarities indicated by
different visual features, and preserves consistency
of semantic similarity. 3. achieves fast training, in-
dexing and search speed.

The rest of the paper is organized as follows: We present
details of our approach in Section 2. Section 3 describes
settings of our experiments and discusses the experimental
results. Finally, we conclude in Section 4.

2. PROPOSED APPROACH
The key idea of our proposed approach is to utilize a set of

different features and their similarities by kernel functions.
This can be formulated as a similarity preserving hashing
with the optimal multiple kernels for visual features. In this
section, we will first give the notations and formulation, and
then present details how to alternately learn the optimal
hashing functions and kernel combination coefficients.

2.1 Formulation
In this paper, we are given a set of N training examples

with M visual features. The m-th feature (dm dimension)

of n-th sample can be represented as X
(m)
n ∈ Rdm×1. Then

X(m) = [X
(m)
1 , X

(m)
2 , . . . , X

(m)
N ] ∈ Rdm×N is the m-th fea-

ture matrix of all training data.
In order to learn P hashing functions {h1, . . . , hP }, we

give a formulation similar to [11] and [5]. The hash codes
Y (P × N matrix) for all training data are learned to pre-
serve the semantic similarity Sij between i-th and j-th data

points (usually S is a sparse matrix), meanwhile satisfy-
ing balance and uncorrelated constrains. Unlike the previ-
ous kernelized methods, in this paper the hash codes are
implicitly related to a series of embedding functions ϕm(·)
corresponding to each visual feature by defining ϕ(Xi) =

[µ
1
2
1 ϕ

T
1 (X

(1)
i ), . . . , µ

1
2
Mϕ

T
M (X

(M)
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(m)
i ) weighted by µ

1/2
m .

Later we will show that it maps data point into the space
defined by a convex combinations of kernels on different fea-
tures. With the embedding function ϕ(·), the p-th hash
function is defined as a linear projection:

hp(·) = sign(V Tp ϕ(·) + bp), p = 1, . . . , P. (1)

Thus the p-th code for i-th sample will be Ypi = hp(Xi).
The hyperplane vector Vp in kernel space can be repre-

sented as a combination of L landmarks Zl embedded in
corresponding kernel space [6, 5, 9]:

Vp =

L∑
l=1

Wlpϕ(Zl), l = 1, . . . , L. (2)

Here W is a L×P weight matrix, and the landmarks can be
clutter centers obtained by clustering [7] or random subsam-

ples [5]. For each feature, let K(m) denote the kernel cor-
responding to its embedding function ϕm(·), which means

that K
(m)
ij = ϕm(X

(m)
i )Tϕm(X

(m)
j ). Then

Kij = ϕ(Xi)
Tϕ(Xj)

=
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2
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µmK
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(3)

Therefore K =
∑M
m=1 µmK

(m), namely ϕ(·) actually defines
a kernel linearly combined by kernels for each feature. Then
codes Yi of i-th data can be rewritten in kernel form:

Yi = sign(WTKi + b), (4)

whereKi is the i-th column of L×N kernel matrixKL×N be-
tween L landmarks and N samples, and b = [b1, b2, . . . , bP ].

Now we give our formulation of multiple feature hashing:

min
W,b,µ

1

2

N∑
i,j=1

Sij‖Yi − Yj‖2 + λ‖V ‖2F

s.t. Yi ∈ {−1, 1}P

N∑
i=1

Yi = 0,
1

N

N∑
i=1

YiY
T
i = I

1Tµ = 1, µ � 0.

(5)

Such formulation forces the learned hash functions to pre-
serve the given similarity S as much as possible, by optimiz-
ing both the hyperplane vectors W and the kernel combina-
tion weights µ. Although in Problem 5, ϕ(Xi) are formed

by concatenating ϕm(X
(m)
i ), but the final dimension after

embedded into the kernel space is only L. Hence, the com-
putation will be reduced much compared to methods [12,
10] which concatenate multiple raw features as one feature.
The complexity comparison details are shown in Table 1,



Table 1: Complexity of Different Multiple Feature
Hashing Methods

methods training search

CHMS [12] O(T (D3 +D2N +DNs)) O(PD)

MFH [10] O(D3 +D2N +DNs) O(PD)

Proposed O(T (LNs + P 3)) O(PM +ML)
1Here P,M, T � D,Ns � N2 and L < D (D =

∑M
m=1 dm).

where T is the iteration number. The sparsity of S helps
reduce the computation involving S from O(N2) to O(Ns)
(Ns � N2) in all three methods.

2.2 Optimization
Due to the discrete constraints and non-convexity, the

above optimization problem is difficult to solve. Similar to
spectral hashing, the discrete constrains of Yi ∈ {−1, 1}P
can be relaxed as Yi = WTKi + b.

Note that with either W or µ fixed, fortunately the prob-
lem is convex with respect to the other. Therefore we present
an alternating optimizing way that can efficiently find opti-
mum in a few steps. First, we will show that given µ, the
optimal W and b of closed form can be obtained elegantly
by eigen-decomposition.

(1) Given the fixed µ, the optimal W can be obtained by
solving the following problem:

min
W

tr(WTCW )

s.t. WTGW = I
(6)

where,

C = KL×N (∆− S)KT
L×N + λKL×L

G =
1

N
KL×N (I − 1

N
11T )KT

L×N .

Here ∆ = diag(S1), b = − 1
N
WTKL×N1. Such problem can

be optimized efficiently by eigen-decomposition as [5] did.
(2) Given W and b, the optimization with respect to µ

can be formulated as a quadratic programming problem:

min
µ

1

2
µTEµ+ hTµ

s.t. 1Tµ = 1, µ � 0

(7)

where,

Eij = 2tr(WTK
(i)
L×N (∆− S)K

(j)
L×N

T
W ), i, j = 1, . . . ,M

hi = λtr(WTK
(i)
L×LW ), i = 1, . . . ,M.

Again, for space limit we omit the derivation. Finally the
optimal solution of Problem 5 can be obtained by repeating
the above two steps until it converges. In our experiments,
it takes less than 10 iterations. For a novel sample x, its
hash bits can be computed as

y = sign(WT [K(x, Z1), . . . ,K(x, ZL)]T + b). (8)

The whole proposed algorithm is listed in Algorithm 1.

3. EXPERIMENTS
In this section we evaluate the proposed method and dis-

cuss the impact of multiple features. There are very few
works designing compact hashing with multiple features ex-
cept the recently proposed composite hashing with multiple

Algorithm 1 Multiple Feature Kernel Hashing (MFKH)

1: Initialize µi = 1
M
, i = 1, . . . ,M .

2: repeat
3: Fix µ, calculate W and b by solving Problem 6;
4: Fix W , calculate µ by solving Problem 7;
5: until converge
6: Generate Y according to Equation 8.

sources (CHMS) [12]. We will compare our method with
CHMS and other state-of-the-art well-known hashing meth-
ods like local sensitive hashing (LSH) [1], spectral hashing
(SH) [11], and optimal kernel hashing (OKH) [5]. As [12]
suggests, we tune appropriate parameters C1 and C2 for
CHMS. For LSH and SH, we concatenate multiple features
as one feature. All methods in our experiments will be run
10 times to suppress the effect of randomness.

3.1 Data Sets
We choose two well known datasets: CIFAR-10 (60K)

and NUS-WIDE (270K) as our experimental data sets.
For simplicity and space limit, and similar to previous works,
we adapt two visual features for each set to verify the effi-
ciency of our proposed method.

CIFAR-10 contains 60K 32× 32 color images of 10 classes
and 6K images in each class. For each image, we extract
384-D GIST feature and 300-D bag of visual words quan-
tized from dense SIFT features of 8×8 patches with 4 space
overlap. NUS-WIDE as one of largest real-world labeled im-
age datasets comprises about 270K images with 81 ground
truth concept tags, of which we consider 25 most frequent
tags (’sky’, ’animal’, etc.). Besides, multiple visual features
have been provided already in this set, and thus here we
arbitrarily select two presentative features: 128-D wavelet
texture and 225-D block-wise color moments. In all our ex-
periments, we apply Gaussian RBF kernels for each feature.

For evaluation, we uniformly sample 3,000 and 5,000 im-
ages respectively as the training data for each dataset. To
test the performance, we randomly select 1,000 and 3,000
query images respectively. The true neighbors are defined
by whether two images share at least one common tag.

3.2 Results and Discussions
Figure 2 shows experimental results on CIFAR-10 includ-

ing recall and precision of Hamming ranking. From Figure
2(a), it is clear that with 24 bits MFKH gives much better
recall performance than other methods including CHMS, SH
and LSH. To evaluate the impact of bit numbers, we increase
P from 8 bits to 48 bits. As Figure 2(b) depicts, increasing
the bit number leads to increasing hamming ranking preci-
sion of top 1,000 results for all methods at first, and then a
slight decrease for MFKH, SH and CHMS. This phenomenon
is similar to those appearing in previous works [7], and we
believe that one reason is that eigen-decomposition places
most of the variance in top few principal directions, which
substantially reduces the quality of following bits. However
the proposed method outperforms others for all bits signifi-
cantly, especially when using 32 bits (over 34% performance
gain). This indicates that MFKH can provide very compact
bits guaranteeing the performance.

We present similar results on the NUS-WIDE shown in
Figure 3. The recall curve of Hamming ranking using 24 bits
is plotted in Figure 3(a). Again MFKH outperforms CHMS



(a) Recall (24 bits) (b) Precision vs. # bits

Figure 2: Performances comparison on CIFAR-10.

significantly, and also LSH and SH with multiple features.
We show the top 5,000 precision in Figure 3(b) using varying
number of bits. Due to similar reasons mentioned above,
performance of all methods except CHMS increase at first
when using more bits, and then decrease except LSH. But
for all bits MFKH achieves the most superior performance
consistently as on CIFAR-10 (over 11% performance gain).

We also compare performance of our method with multi-
ple features and single features on NUS-WIDE. Note that
with single feature, MFKH turns to be OKH [5]. From Fig-
ure 4, it can be observed that the performance with multiple
features outperforms both single features (F1: wavelet tex-
ture and F2: color moments) as expected, which indicates
that our multiple feature scheme helps improve the retrieval
performance by incorporating the complementary informa-
tion between features. The results are consistent with other
related research on multiple feature fusion.

It should be noted that in all our experiments we just sim-
ply choose RBF kernels. More performance improvement
might be archived, if the optimal kernels for different fea-
tures are learned or chosen (for instance, Chi-Square kernels
for histogram). The parameter λ has slight effect on the per-
formance according to our observation. Hence in all exper-
iments we simply set λ = 0.1. Finally, in terms of training
and search time, we use a workstation with 2.53 GHz Intel
Xeon CPU and 10 GB Memory. On average CHMS takes
more than 100 s to train on NUS-WIDE using 32 bits and
10 ms for each query, while MFKH archives much efficiency
by only taking less than 15 s and 3 ms respectively.

4. CONCLUSIONS
As described in this paper, we have proposed an efficient

kernel hashing with multiple features. The hashing problem
is formulated as a similarity preserving hashing with lin-
early combined multiple kernels, which is compatible with
general data types and diverse similarities indicated by dif-
ferent visual features. Due to the efficient alternating op-
timizing way, our method achieves fast training, indexing
and search speed. Experiment results on large-scale image
retrieval prove the promising performance. Our work indi-
cates that in the future more attention can be placed on how
to utilize the information conveyed by different features.
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(a) Recall (24 bits) (b) Precision vs. # bits

Figure 3: Performances comparison on NUS-WIDE.

(a) Precision (32 bits) (b) Precision vs. # bits

Figure 4: Precision comparison of MFKH with single

feature (F1 and F2) and multiple features (F1+F2).
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