
Optimal Kernel Hashing with Multiple Features

supplemental material: Proof of Equation (7) and (8)

APPENDIX
Given a set of N training examples with M visual features,
the m-th feature (dm dimension) of n-th sample can be rep-

resented asX
(m)
n ∈ Rdm×1. ThenX(m) = [X

(m)
1 , X

(m)
2 , . . . , X

(m)
N ] ∈

Rdm×N is the m-th feature matrix of all training data.
In order to obtain compact hash codes, we give a formula-

tion similar to Spectral Hashing. The hash codes are learned
to preserve similarity between data points, and meanwhile
satisfying balance and independent constrains. Unlike the
previous methods, the hash codes are explicitly related to
the kernels corresponding to each visual feature:

min
W,b,µ

1

2

N∑
i,j=1

Sij‖Yi − Yj‖2 + λ‖V ‖2F

s.t. Yi ∈ {−1, 1}P

N∑
i=1

Yi = 0

1

N

N∑
i=1

YiY
T
i = I

1Tµ = 1, µ � 0

(1)

where

ϕ(Xi) = [µ
1
2
1 ϕ

T
1 (X

(1)
i ), . . . , µ

1
2
Mϕ

T
M (X

(M)
i )]T (2)

Vp =
L∑
l=1

Wlpϕ(Zl), p = 1, . . . , P (3)

and

Ypi = hp(Xi) = sign(V Tp ϕ(Xi) + bp), i = 1, . . . , N (4)

Similar to spectral hashing, the discrete constrains of Yi ∈
{−1, 1} are relaxed and then Ypi = hp(Xi) = V Tp ϕ(Xi)+ bp.

For each feature, define its kernel as K(m) corresponding to

its embedding function ϕm(·), which means that K
(m)
ij =
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ϕm(X
(m)
i )Tϕm(X

(m)
j ). With the above definition,

Kij = ϕ(Xi)
Tϕ(Xj)

=

M∑
m=1

(µ
1
2
mϕm(X

(m)
i ))T (µ

1
2
mϕm(X

(m)
j ))

=

M∑
m=1

µmK
(m)
ij

(5)

Therefore, K =
∑M
m=1 µmK

(m), and Yi can be reformu-
lated in kernel form:

Yi = V Tϕ(Xi) + b = WTKi + b (6)

where Ki is the i-th column of K, and b = [b1, b2, . . . , bP ].

A. DERIVATION OF PROBLEM (7)
From constraint

N∑
i

Yi =

N∑
i

WTKi + b = 0 (7)

we get

b = − 1

N
WTKL×N1 (8)

Then substitute b into Yi, and rewrite the objective as:

1

2

N∑
i,j=1

Sij‖Yi − Yj‖2 + λ‖V ‖2F

= tr(WTKL×N (∆− S)KT
L×NW ) + λtr(WTKL×LW )

= tr(WT (KL×N (∆− S)KT
L×N + λKL×L)W )

= tr(WTCW )

(9)

where C = KL×N (∆−S)KT
L×N+λKL×L and ∆ = diag(S1).

In the above derivation, we use the fact that

(I − 1

N
11T )(∆− S)(I − 1

N
11T )T = ∆− S. (10)

For another constraint 1
N

∑N
i=1 YiY

T
i = I, substitute Yi



and b in into it and we get

1

N

N∑
i=1

YiY
T
i =

1

N

N∑
i=1

(WTKi + b)(WTKi + b)T

=
1

N
WTKL×N (I − 1

N
11T )(I − 1

N
11T )TKT

L×NW

=
1

N
WTKL×N (I − 1

N
11T )KT

L×NW

(11)

Here we use the fact that

(I − 1

N
11T )(I − 1

N
11T )T = I − 1

N
11T . (12)

Therefore the constrain turns to be WTGW = I, where
G = 1

N
KL×N (I − 1

N
11T )KT

L×N .
In summary, given the fixed µ, the optimal W and b can

be obtained by solving the following problem:

min
W

tr(WTCW )

s.t. WTGW = I
(13)

where

C = KL×N (∆− S)KT
L×N + λKL×L

G =
1

N
KL×N (I − 1

N
11T )KT

L×N .

Here ∆ = diag(S1) and b = − 1
N
WTKL×N1. Such problem

can be optimized efficiently by eigen-decomposition.

B. DERIVATION OF PROBLEM (8)
Given W and b, the objective in Equation 9 can be written

as

1

2

N∑
i,j=1

Sij‖Yi − Yj‖2 + λ‖V ‖2F

= tr(WT (

M∑
m=1

µmK
(m)
L×N )(∆− S)(

M∑
m=1

µmK
(m)
L×N )TW )

+ λtr(WT ((

M∑
m=1

µmK
(m)
L×L))W )

= tr(

M∑
i,j=1

µiµjW
TK

(i)
L×N (∆− S)K

(j)
L×NW )

+ λtr(

M∑
i=1

µiW
TK

(i)
L×LW )

=
1

2
µTEµ+ hTµ

(14)

where Eij = 2tr(WTK
(i)
L×N (∆ − S)K

(j)
L×N

T
W ) and hi =

tr(WTK
(i)
L×LW ).

Therefore the the optimization with respect to µ can be
formulated as a quadratic programming problem as follows:

min
µ

1

2
µTEµ+ hTµ

s.t. 1Tµ = 1, µ � 0.

(15)

where,

Eij = 2tr(WTK
(i)
L×N (∆− S)K

(j)
L×N

T
W ), i, j = 1, . . . ,M

hi = λtr(WTK
(i)
L×LW ), i = 1, . . . ,M


