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ABSTRACT
Recently hash-based nearest neighbor search has become at-
tractive in many applications due to its compressed stor-
age and fast query speed. However, the quantization in
the hashing process usually degenerates its discriminative
power when using Hamming distance ranking. To enable
fine-grained ranking, hash bit weighting has been proved
as a promising solution. Though achieving satisfying per-
formance improvement, state-of-the-art weighting methods
usually heavily rely on the projection’s distribution assump-
tion, and thus can hardly be directly applied to more general
types of hashing algorithms. In this paper, we propose a new
ranking method named QRank with query-adaptive bitwise
weights by exploiting both the discriminative power of each
hash function and their complement for nearest neighbor
search. QRank is a general weighting method for all kinds of
hashing algorithms without any strict assumptions. Exper-
imental results on two well-known benchmarks MNIST and
NUS-WIDE show that the proposed method can achieve up
to 17.11% performance gains over state-of-the-art methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; H.3.3 [Information Storage and
Retrieval]: Information Search and Retrieval; I.2.6 [Artificial
Intelligence]: Learning
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1. INTRODUCTION
Hash based nearest neighbor search has attracted great

attentions in many areas, such as large-scale visual search,
data mining, pattern recognition and machine learning [4].
As the most well-known method, Locality-Sensitive Hashing
(LSH) pioneered the hashing paradigm [1]. It projects and
quantizes high-dimensional data to the binary hash code,
and gains efficiency in terms of storage cost and query speed
by computing the Hamming distance. Its theoretical analy-
sis meanwhile ensures that nearest neighbors of each point
are mapped to the same hash code with a high probability.

Due to the random generation of hash projections, LSH
usually needs a quite large budget of hash functions to achieve
desired discriminative power, which certainly brings large
memory and time consumption. Many following work de-
vote to pursuing compact hash codes in unsupervised [10,15]
and supervised manner [5, 12]. Besides, there are a variety
of powerful techniques to improve the compactness of hash
codes like nonlinear hashing [6,9], multiple features [12,13],
multiple bits [10] and bit selection [11].

The Hamming distance ranking helps achieve compressed
storage and fast computation in hash-based nearest neigh-
bor search. However, the quantization in hashing loses the
exact ranking information among the samples, and thus de-
generates the discriminative power of the Hamming distance
measurement. For instance, in practice there exist more
than one buckets that share the same Hamming distance to
the query, and subsequently samples falling in these buckets
will be ranked equally using Hamming distance. To im-
prove the ranking accuracy using Hamming distance, it is
necessary to enable fine-grained ranking by alleviating the
quantization loss. One of the most powerful and successful
techniques is hash bit weighting, which assesses the quality
of each hash bit to improve the discriminative power of the
hash code. Similar to traditional visual reranking [2], such
process can be efficiently performed only on the top ranked
results within certain Hamming radius.

Along this direction, [8] proposed a query-adaptive Ham-
ming distance ranking method using the learned bitwise
weights for a diverse set of predefined semantic concept class-
es. [17] studied a query-sensitive hash code ranking algo-
rithm (QsRank) for PCA-based hashing algorithms without
compressing query points to discrete hash codes. [16] also p-
resented a state-of-the-art weighted Hamming distance rank-
ing algorithm (WhRank) based on the data-adaptive and
query-sensitive bitwise weight. Though achieving promising
performance improvement, methods like WhRank heavily
rely on the assumption of data distribution (eg., Laplace dis-
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Figure 1: Demonstration of the proposed method.

tribution for spectral hashing [15]). Moreover, these meth-
ods are usually designed for projection based hashing algo-
rithms. Therefore, they can hardly be directly applied for
nonlinear hashing algorithms like spherical hashing [7] and
K-means hashing [6].

In this paper, we propose a new ranking method with
weighted hamming distance. By exploiting the similarity
between the query and database samples, we learn a set of
query-adaptive bitwise weights that characterize both the
discriminative power of each hash function and their com-
plement for nearest neighbor search. Assigning different
weights to individual hash bit will distinguish the results
sharing the same hamming distance, and obtain a more fine-
grained and accurate ranking order. Compared to existing
methods, our method is more general for different types of
hashing algorithms, without strict assumptions on the data
distribution. Meanwhile, it can faithfully enhance the over-
all discriminative power of the weighted Hamming distance.

The rest of the paper is organized as follows: The details
of our approach are present in Section 2. Section 3 describes
settings of our experiments and discusses the experimental
results. Finally, we conclude in Section 4.

2. THE PROPOSED APPROACH
In this section, we propose the query-adaptive ranking

method (named QRank) using weighted hamming distance.
It utilizes the similarity relationship between the query point
and its neighbors in the database to measure the overall dis-
criminative power of the hash code, simultaneously consider-
ing both the quality of hash functions and their correlations.

2.1 Query-Adaptive Weight
Given a set of n training samples {xi ∈ Rd, i = 1, . . . , n}

and a set of m hash functions H(·) = {h1(·), . . . , hm(·)},
each training sample xi is encoded into hash bit yik =
hk(xi) ∈ {−1, 1} by the k-th hash function. With the hash
functions and corresponding weights w, the weighted Ham-
ming distance between any two points xi and xj are usually
defined as dh(xi, xj) =

∑m
k=1 wk(yik ⊗ yjk).

To improve the ranking precision of the weighted dis-
tance dh, a data-dependent and query-adaptive wk should
be learnt to characterize the overall quality of the k-th hash
function in H. Intuitively, for a query point q, a hash func-
tion well preserving q’s nearest neighbors NN(q) (eg., h3

and h4 in Figure 1) should play a more important role in
the weighted Hamming distance, and thus a larger weight
should be assigned to it.

Formally, for a high-quality hash function hk, if p ∈ NN(q),
then the higher its similarity s(p, q) to q, the larger the prob-
ability that hk(q) = hk(p). Therefore, based on the neighbor
preservation of each hash function, we define its weight using

the spectral embedding loss [11,15]:

wk = −1

2

∑
p∈NN(q)

s(q, p)‖hk(q)− hk(p)‖2

=
∑

p∈NN(q)

s(q, p)hk(q)hk(p) + const.
(1)

where we constrain
∑
p∈NN(q) s(q, p) = 1. Note that in the

above definition the similarity can be adaptively tailored for
different scenarios.

To make the weight positive and sensitive to the capability
of neighbor preservation, in practice we use the following
form with γ > 0:

wk = exp

γ ∑
p∈NN(q)

s(q, p)hk(q)hk(p)

 . (2)

In the above definition, one important question is how to
efficiently find the query’s nearest neighbors NN(q) at the
online query stage. It is infeasible to find the exact ones
among the whole database. One way to speedup the com-
putation is choosing nl � n landmarks to represent the
database using various techniques like K-means, where the
approximated nearest neighbors can be quickly discovered
by linear scan. We adopt the simple way by randomly sam-
pling nl points as the landmarks at the offline training stage.

2.2 Weight Calibration
As Figure 1 demonstrates that hash function h3 and h4

shows satisfying capability of neighbor preservation for query
q, but the large correlation between them indicates unde-
sired redundancy between them. Instead, though function
h2 performs worse than h3 and h4, but it serves as a com-
plement to h4, with which they together can well preserve
all neighbor relations of q. This observation motivates us
to further calibrate the query-adaptive weights, taking the
correlations among all hash functions into consideration.

Given any pair of hash functions hi and hj from H, if they
behave similarly on a certain set of data points (i.e., the hash
bits encoded by them are quite similar), then we can regard
that the two hash functions are strongly correlated. In prac-
tice, to improve the overall discriminative power of the hash
codes, uncorrelated (or independent) and high-quality hash
functions should be given higher priority.

Since computing higher-order independence among hash
functions is quite expensive, we approximately evaluate the
independence based on the pair-wise correlations between
them. Specifically, we introduce the mutual independence
between hash functions based on the mutual information
MI(yi, yj)) between the bit variables yi and yj generated by
hash function hi and hj :

aij = exp [−λMI(yi, yj)] , (3)

where λ > 0 and aij = aji, forming a symmetrical indepen-
dence matrix A = (aij).

Then we calibrate the query-adaptive weights wk by reweigh-
ing it using a positive variable πk. Namely, the new bitwise
query-adaptive weight is given by

w∗k = wkπk, (4)

which should overall maximize both the neighbor preserva-
tion and the independence between hash functions. We for-
mulate it as the following quadratic programming problem:



max
π

∑
ij

w∗iw
∗
j aij

s.t. 1Tπ = 1, π � 0.

(5)

The above problem can be efficiently solved by a number of
powerful techniques like replicator dynamics [11].

2.3 Data-Dependent Similarity
As aforementioned, the similarity between the query and

database samples plays an important role in pursuing query-
adaptive weights in Sec. 2.1. Since in practice data points
are usually distributed on certain manifold, the standard
Euclidean metric cannot strictly capture their global simi-
larities. To obtain similarity measurement adaptive to dif-
ferent datasets, we adopt the anchor graph to represent any
sample x by z(x) based on their local neighbor relations to
anchors points U = {uk ∈ Rd}rk=1, which can be generated
efficiently by clustering or sampling [10]:

[z(x)]j =

{ K(x,uj)∑
u′
j
∈NN(x) K(x,uj′ )

, if uj ∈ NN(x)

0, otherwise
(6)

where NN(x) denotes x’s nearest anchors in U according to
the predefined kernel function K(x, uj) (e.g., Gaussian k-
ernel). The highly sparse z(x) serves as a nonlinear and
discriminative feature representation, and can be used to
efficiently approximate the data-dependent similarities be-
tween samples. Specifically, for query q and any point p,
their similarity can be computed by

s(p, q) = exp(−‖z(p)− z(q)‖2/σ2), (7)

where σ is set to the largest distance between z(p) and z(q).

2.4 Online Query
At the offline stage, both nl sampled landmarks and r

anchors can be obtained efficiently, and the landmarks can
be represented using anchors in O(nlr). At the online stage,
first the query feature is transformed into anchor representa-
tion and used to compute its similarities to the landmarks in
O(r+nl), second the query-adaptive weights can be obtained
by quadratic programming (5) in polynomial time, and fi-
nally the results are fast ranked according to the weighted
hamming distances.

3. EXPERIMENTS
To evaluate the proposed query-adaptive hash code rank-

ing method (QRank), we conduct extensive experiments on
the real-world image datasets MNIST and NUS-WIDE:

MNIST: it includes 70K 784 dimensional images, each of
which is associated with a digit label from ‘0’ to ‘9’.

NUS-WIDE: it is one of largest real-world labeled image
datasets, consisting of 270K images with 81 ground truth
concept tags, and we consider 25 most frequent tags.

We compare QRank with the state-of-the-art binary codes
ranking method WhRank [16] over a variety of baseline hash-
ing algorithms including Locality Sensitive Hashing (LSH)
[1], Spectral Hashing (SH) [15], Kernelized Locality-Sensitive
Hashing (KLSH) [9], PCA-Hashing (PCAH) [14], Iterative
Quantization (ITQ) [3], Spherical Hashing (SPH) [7], K-
means Hashing (KMH) [6]. Since WhRank outperformed
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(a) Precision @ 48 bits
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Figure 3: Performances comparison on NUS-WIDE.

QsRank [17] significantly as reported in [16], we omit the
direct comparison between our QRank and QsRank.

We adopt the popular performance metric including preci-
sion, recall and mean average precision (MAP) in our exper-
iments. All results are averaged over 10 independent runs to
suppress the randomness. For each run, we randomly sam-
ple 5,000 images as the training data, 3,000 as the landmarks
and 1,000 as query images. The true nearest neighbors are
defined as the images sharing at least one common tag.

3.1 Results and Discussions
Figure 2 shows the precision and recall curves respectively

using 48 and 96 bits on MINST. We can easily find out that
both hash bit weighting methods (WhRank and QRank)
achieved better performances than the baseline hashing algo-
rithms. The observation indicates that the hash code rank-
ing based on weighted Hamming distance hopefully serves as
a promising solution to boosting the performance of hash-
based retrieval. In all cases, our proposed QRank consis-
tently achieves the superior performances to WhRank over
different hashing algorithms. Figure 4(a) depicts the over-
all performance evaluation using MAP with 96 hash bits,
where we get a similar observation that QRank outperforms
WhRank significantly, e.g., compared to WhRank, QRank
obtains 17.11%, 11.36%, 14.06% and 11.39% performance
gains respectively over LSH, ITQ, SH and KLSH.

Besides MNIST, Figure 3 and 4(b) present the precision
curves and MAP on the NUS-WIDE dataset when using
48 and 96 bits. By comparing the performance of QRank
with that of WhRank and baseline hashing algorithms, we
get a similar conclusion as on MNIST that both QRank and
WhRank can enhance the discriminative power of hash func-
tions by weighting them elegantly, and meanwhile in all cases
QRank clearly outperforms WhRank owing to its compre-
hensive capability of distinguishing high-quality functions.

It is worth noting that since WhRank depends on the
distribution of the projected samples, it cannot be directly
applied to hashing algorithms like SPH and KMH. Instead,
the proposed method derives the bitwise weight only relying
on the data-dependent similarity. Therefore, it can not only
capture the neighbor relations of the query, but also possess
universality suiting for all hashing algorithms. Figure 2-4
show that QRank obtains significant performance gains over
SPH and KMH in all cases.

We investigate the effect of different parts of QRank in
Table 1 by comparing the performance of QRank with or
without the weight calibration (named QRank−). The re-
sults are reported over LSH, SH, PCAH and ITQ respec-
tively using 96 bits on MNIST. It is obvious that QRank−



0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TopN

P
re

ci
si

on

 

 

(a) Precision @ 48 bits

0 1000 2000 3000 4000 5000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TopN

P
re

ci
si

on

 

 

(b) Precision @ 96 bits

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TopN

R
ec

al
l

 

 

(c) Recall @ 48 bits

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

TopN

R
ec

al
l

 

 
PCAH

PCAH−WhRank

PCAH−QRank

LSH

LSH−WhRank

LSH−QRank

ITQ

ITQ−WhRank

ITQ−QRank

SH

SH−WhRank

SH−QRank

KLSH

KLSH−WhRank

KLSH−QRank

SPH

SPH−QRank

KMH

KMH−QRank

(d) Recall @ 96 bits

Figure 2: Performances comparison on MNIST.
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Figure 4: MAP (%) on MNIST and NUS-WIDE.

Table 1: MAP (%) of different parts of QRank on
MNIST

Ranking Method LSH SH PCAH ITQ

Baseline 35.53 25.91 19.87 44.14

QRank− 40.71 31.39 22.07 46.87
QRank 44.77 37.02 32.32 49.15

only using query-adaptive weights without considering the
redundance among hash functions is able to boost the hash-
ing performance, but QRank appended with the weight cal-
ibration can further bring significant (up to 46.44%) perfor-
mance gains. This indicates that both the individual quality
of each hash function and their complement are critical for
fine-grained neighbor ranking.

Finally, we present the time cost of different methods in
Table 2. We can see that though our QRank spends more
time than WhRank on learning query-adaptive weight (50.19
ms), on the whole this part is relatively small and the online
query is quite efficient in practice.

4. CONCLUSIONS
As described in this paper, we proposed a new hash code

ranking method named QRank, which learns a query-adaptive
bitwise weights by simultaneously considering both the indi-
vidual quality of each hash function and their complement
for nearest neighbor search. Compared to state-of-the-art
weighting methods, QRank serves as a general solution to
enabling fine-grained ranking over all kinds of hashing al-
gorithms. Due to both the data-dependent similarity and
query-adaptive weights, QRank significantly and efficiently
boosts the ranking performance in practice.

Table 2: Time cost (ms) of different methods on
MNIST

Baseline Hash WhRank QRank

weight computing 0 1.27 50.19
distance ranking 39.18 141.15 141.15

Total time 39.18 142.42 191.34

5. ACKNOWLEDGMENTS
This work is supported in part by NSFC 61370125 and

61101250, YWF-14-JSJXY-010, NCET-12-0917, SKLSDE
2013ZX-05 and 2014ZX-07.

6. REFERENCES
[1] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable
distributions. In SCG, 2004.

[2] C. Deng, R. Ji, W. Liu, D. Tao, and X. Gao. Visual reranking
through weakly supervised multi-graph learning. In IEEE
ICCV, 2013.

[3] Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In IEEE
CVPR, pages 817 –824, june 2011.

[4] J. He, J. Feng, X. Liu, T. Cheng, T.-H. Lin, H. Chung, and
S.-F. Chang. Mobile product search with bag of hash bits and
boundary reranking. In IEEE CVPR, 2012.

[5] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with
optimized kernel hashing. In ACM SIGKDD, 2010.

[6] K. He, F. Wen, and J. Sun. K-means hashing: An
affinity-preserving quantization method for learning binary
compact codes. In CVPR, 2013.

[7] J. Heo, Y. Lee, J. He, S.-F. Chang, and S. Yoon. Spherical
hashing. In CVPR, 2012.

[8] Y.-G. Jiang, J. Wang, and C. Shih-Fu. Lost in binarization:
query-adaptive ranking for similar image search with compact
codes. In ACM ICMR, 2011.

[9] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing
for scalable image search. In IEEE ICCV, 2009.

[10] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with
graphs. In ICML, 2011.

[11] X. Liu, J. He, B. Lang, and S.-F. Chang. Hash bit selection: a
unified solution for selection problems in hashing. In IEEE
CVPR, 2013.

[12] X. Liu, J. He, D. Liu, and B. Lang. Compact kernel hashing
with multiple features. In ACM MM, 2012.

[13] J. Song, Y. Yang, Z. Huang, H. T. Shen, and R. Hong. Multiple
feature hashing for real-time large scale near-duplicate video
retrieval. In ACM MM, 2011.

[14] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing
for scalable image retrieval. In IEEE CVPR, 2010.

[15] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In
NIPS, 2008.

[16] L. Zhang, Y. Zhang, J. Tang, K. Lu, and Q. Tian. Binary code
ranking with weighted hamming distance. In CVPR, 2013.

[17] X. Zhang, L. Zhang, and S. Heung-Yeung. Qsrank:
Query-sensitive hash code ranking for efficient ε-neighbor
search. In CVPR, 2012.


